| 研究生: |
趙芷娟 Chew, Chee-Jiang |
|---|---|
| 論文名稱: |
二氧化矽修飾之交聯結構複合膠態高分子電解質之合成鑑定與其於鋰電池應用 Synthesis and Characterization of Modified Silica Used as Filler in Cross-Linked Gel Polymer Electrolytes for Lithium Batteries |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 鋰電池 、膠態高分子電解質 、二氧化矽 、聚醚高分子 |
| 外文關鍵詞: | Lithium battery, Gel polymer electrolyte, Silica, Polyether |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功以溶膠-凝膠法合成具甲基丙烯醯氧基的二氧化矽交聯劑,並將其導入以聚醚高分子為主體的SDMA,製成複合性高分子電解質,由掃描式電子顯微鏡、線性掃描伏安法測試,可得知二氧化矽修飾物能有效提升熱穩定性、電化學穩定性達4.5V以上。添加二氧化矽修飾物能有助於鋰離子的傳遞,其離子傳導度在30℃可達5.40x10-3 S cm-1。添加越多無機物,極化現象會變小,二氧化矽修飾物在2C放電下的電容值有68mAhg-1。而在循環壽命測試中,導入二氧化矽修飾物能夠更降低電池內阻抗與穩定鋰金屬鈍化層,使0.5C/0.5C長效半電池與100次循環充放電的測試後,可達到88mAhg-1。二氧化矽修飾後交聯結構存在下的鋰離子均勻的堆積,形成穩定的SEI層,使SEI層不受電解液的侵蝕,使得二氧化矽修飾物在0.5C在50圈充放電後其界面阻抗變化減少。
In this study, we synthesize functional silica via sol-gel method has been accomplished and with TEM. From LSV, the gel polymer electrolytes have good electrochemical window about 4.5V. For battery applications, the gel polymer electrolytes show good half-cell specific capacity with the addition of functional silica. The addition of functional silica can reduce internal resistance. In cycle life test, it can reach 68mAhg-1 capacity in 0.5C/0.5C charge-discharge rate after 100 cycles test. SG50 exhibited a remarkable improved cycling performance after 100 cycles.
The result shows that the gel polymer electrolytes enhance stability and performance in lithium-ion battery. We observed the surface of the Li anode obtained from the cells after 100 cycles. In contrast, SG50 features a compact and smooth SEI layer but the liquid electrolyte forms an inhomogeneous layer with crack.
(1) J.-M. Tarascon, and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, 2001.
(2) B. Scrosati, “History of lithium batteries,” Journal of Solid State Electrochemistry, vol. 15, no. 7, pp. 1623-1630, 2011.
(3) Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., “A Review of advanced and practical lithium battery materials, ” Journal of Materials Chemistry, vol.21, pp. 9938-9954, 2011.
(4) R. C. Agrawal, and G. P. Pandey, “Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview,” Journal of Physics D: Applied Physics, vol.41, no.22 , pp.223001, 2008.
(5) A. Varzi, R. Raccichini, S. Passerini, and B. Scrosati, “Challenges and prospects of the role of solid electrolytes for high-performance lithium ion batteries,” Energy Storage Materials, vol.5, pp.139-164, 2016.
(6) Lin, D.; Liu, Y.; Cui, Y., “Reviving the Lithium Metal Anode for high-energy batteries,” Nature Nanotechnology, 12, pp.194-206, 2017.
(7) Ozawa, K., “Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2 /C system,” Solid State Ionics, 69, pp.212-221, 1994.
(8) J.-i. Yamaki, et al., “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte,” Journal of Power Sources, vol.74, no.2, pp.219-227, 1998.
(9) Toprakci, O,; Toprakci, H. A. K.; Ji, L. W.; Zhang, X. W., “Fabrication and electrochemical characteristics of LiFePO4 powders for lithium-ion batteries, ”KONA powder and particle journal ,no.28, pp.50-73, 2010.
(10) C. Julien, et al., “Comparison issues of cathode materials for Li-ion batteries,” Inorganics, vol.2, no.1, pp.239-246, 2003.
(11) G. Bieker, M. Winter, and P. Bieker, “Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode,” Physical Chemistry Chemical Physics, 17, pp.8670-8679, 2015.
(12) S. Bsu, et al., “Synthesis and properties of lithium-graphite intercalation compounds,” Materials Science and Engineering, vol.38, no.3, p.275-283, 1979.
(13) D. Guérard and H. Fuzellier, “The graphite intercalation compounds and their applications,” Condensed Systems of Low Dimensionality, pp. 695-707, 1995.
(14) K. M. Abraham, “Prospects and limits of energy storage in batteries,” Journal Physics Chemistry Letters, 6, pp.830-844, 2015.
(15) V. Aravindan, J. Gnanaraj, S. Madhavi, Liu HK, “Lithium-ion conducting electrolyte salts for lithium batteries,” Chemistry- A European Journal, 17, pp.14326-14346, 2011.
(16) Wright, P. V., “Developments in polymer electrolytes for lithium batteries,” Mrs Bulletin, 27, pp.597-602, 2002.
(17) Zlatka Gadjourova, Yuri G. Andreev, david P. Tunstall and Peter G. Bruce, “Ionic conductivity in crystalline polymer electrolytes,” Nature, 412, pp.520-523, 2001.
(18) Zhigang Xue, Dan He, and Xiaolin Xie, “Poly(Ethylene Oxide)-based electrolytes for lithium-ion batteries,” Journal of Materials Chemistry A, 3, pp.19218-19253, 2015.
(19) G. Feullade and P. Perche, “Ion-conductive macromolecular gels and membranes for solid lithium cells,” Journal of Applied Electrochemistry, 5, pp.63-69, 1975.
(20) H. Kim, T. Y. Kim, V. Roev, H. C. Lee, H. J. Kwon, H. Lee, S. Kwon, and D. Im, “Enhanced electrochemical stability of quasi-solid-state electrolyte containing SiO2 nanoparticles for Li-O2 battery applications,” ACS applied Material Interfaces, vol.8, pp.1344-1350, 2016.
(21) J. K. Kim, J. Scheers, T. J. Park, and Y. Kim, “Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries,” ChemSusChem, vol.8, no.2, pp.636-641, 2015.
(22) J. E. Weston, B. C. H. Steele, “Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes,” Solid State Ionics, vol.7, no.1, pp.75-79, 1982.
(23) D. Golodnitsky, G. Ardel, and E. Peled, “Ion-transport phenomena in concentrated PEO-based composite polymer electrolytes,” Solid State Ionics, vol.147, no.1-2, pp.141-155, 2002.
(24) E. Quartarone, and P. Mustarelli, “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives,” Royal Society of Chemistry, vol.40, no.5, pp.2525-2540, 2011.
(25) Y. Zhao, C. Wu, G.Peng, X. Chen, X. Yao, Y. Bai, F. Wua, S.Chen, X. Xu, “A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries” Journal of Power Sources, vol.301, pp.47-53, 2016.
(26) K. Fu, Y. H. Gong, J. Q. Dai, A. Gong, X. G. Han, Y. G. Yao, C. W. Wang, Y. B. Wang, Y. N. Chen, C. Y. Yan, Y. J. Li, E. D. Wachsman, and L. B. Hu, “Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries,” Proceedings of the National Academy of Sciences of the United States of America, vol.113, no.26, pp.7094-7099, 2016.
(27) J. W. Fergus, “Ceramic and polymeric solid electrolytes for lithium-ion batteries,” Journal of Power Sources, vol.195, no.15, pp.4554-4569, 2010.
(28) G. Nikolic, S. Zlatkovic, M. Cakic, S. Cakic, C. Lacnjevac, Z. Rajic, “Fast Fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts,” Sensors, 10, pp.684-696, 2010.
(29) L. L. Hench, and J. K. West, “the Sol-Gel Process,” Chemical reviews, 90, 33-72, 1990.
(30) C. J. Brinker, “Hydrolysis and Condensation of Silicates: Effects on Structure,” Journal of Non-Crystalline Solids, 100, pp.31-50, 1988.
(31) R. A. Assink, and B. D. Kay, “Sol-Gel Kinetics I. Functional Group Kinetics, ” Journal of Non-Crystalline Solids, 99 , pp.359-370, 1988.
(32) “The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica,” Wiley Interscience, 1979.
(33) D. A. Dornbusch, R. Hilton, M. J. Gordon, and G. J. Suppes, “Effects of Sonication on Eis Results for Zinc Alkaline Batteries, ” ECS Electrochemistry Letters, 2, pp.89-92, 2013.
校內:不公開