簡易檢索 / 詳目顯示

研究生: 陳柏璋
Chen, Bo-Chang
論文名稱: 壓電效應對未摻雜與銻摻雜氧化鋅奈米柱光電化學分解水反應之研究
Piezotronic Effect on Photoelectrochemical Water Splitting of Undoped and Sb-doped ZnO nanorods
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 光電化學反應氧化鋅壓電效應
外文關鍵詞: photoeletrochemical, water splitting, ZnO
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來再生能源及綠色能源的發展逐漸受到重視,燃料電池為未來將取代石化燃料的綠色能源之一,氫能的概念也慢慢的被提出,越來越多的研究如何更有效的製造氫氣並且儲存氫氣。利用半導體作為材料,光催化及光電化學電解水為最有潛力的產氫方法,在太陽光的照射下就能得到氫氣及氧氣,而不會對環境造成汙染。
    氧化鋅(Zinc oxide, ZnO)是一種n型直接能隙半導體,其能隙為3.3eV,可吸收紫外光波段的能量,具有好的物理及化學性質,其導電性佳且化學穩定性好,在C軸優選方向成長而有優異的壓電及壓光效應,因此也是常被選為光電化學電解水的陽極材料。在氫能燃料為前瞻的將來,更具有效率的提升電解水視為重要的議題,本研究結合摻雜和壓電效應的方式來提升陽極ZnO的光電化學反應。
    水熱法製備氧化鋅奈米柱,可以在低溫的環境下成長,其成本低,藉由改變濃度和成長時間,能控制奈米柱的疏密程度及長度,以此來達到最佳的光電化學反應,一維的奈米結構具有良好的方向性,電子能在奈米結構中有效地傳遞,且具有高面積體積比可提高與電解液接觸的面積。在水熱法成長的過程中,摻雜不同含量的銻,得到p-type的ZnO奈米柱,最大摻雜的量為2 at% Sb,能增加在光電催化下ZnO的光電流,在0.1 M Na2SO4的電解液中0.5 V (V vs Ag/AgCl)的光電流為1.07 mA/cm2,利用自製的施力裝置在ZnO光電催化的同時施加拉伸應力與壓縮應力,並探討n-type 的ZnO及p-type的ZnO受力對於光電化學作用的影響。

    In a process of photoelectrochemical (PEC) water splitting, We demonstrated the effective strategy for improvement of the photocurrent density. We synthesize the ZnO nanorods on flexible ITO/PET substrate by hydrothermal method. When tensile or compressive strains were applied on ZnO anode, we observed a enhancement and reduction of the photocurrent density, respectively. The Schottky barrier height at the interface of ZnO and ITO changed, which is result of piezoelectric potential lead to the photocurrent density variation. Under the tensile strain, ε = 0.15%, the photocurrent density is 0.63mA/cm2 (at 0.5V Ag/AgCl) and the efficiency can yield ~10% improvement of the maxium PEC efficiency. Sb-dpoed ZnO nanorods have more photogenerated electron-hole pairs than undoped ZnO nanorods. The photocurrent density of 2 at% Sb-doped ZnO NRs is 1.07 mA/cm2. Sb-doping can increased the piezoelectric potential at ZnO/ITO interface in the PEC system. The Sb-doped ZnO NRs with tensile strains are 3 times or 4 time more efficiency than the Sb-doped ZnO NRs without strains.

    第一章 序論 1 1.1 前言 1 1.1.1 熱分解法 1 1.1.2 熱化學法(thermochemical) 2 1.1.3 電解法(water electrolysis) 2 1.1.4 生物法 2 1.1.5 光催化法(photocatalytic, PC) 3 1.1.6 光電化學法(Photoelectrochemical, PEC) 4 1.2 實驗動機及目標 5 第二章 文獻回顧 6 2.1 氧化鋅的簡介與特性 6 2.1.1 結構與性質 6 2.1.2 一維的晶體結構 7 2.1.3 表面極性與壓電特性 7 2.2 光電化學的基礎理論 9 2.2.1 光電化學熱力學理論 9 2.2.2 光電化學及參考電位 10 2.2.3 半導體電解水產生氫氣與氧氣的條件 13 2.2.4 電解水的過程 15 2.3 光電化學實驗的架設 16 2.4 壓電效應(Piezoelectric effect) 17 2.5 壓電電子應用於光電化學反應 18 2.5.1 壓電效應在電極與半導體界面的機制 19 2.5.2 如何區分壓電與殘留壓電電位 21 2.6 水熱法製備氧化鋅奈米柱 23 2.7 氧化鋅p-type的摻雜 24 2.8 半導體與電解液介面 25 2.8.1 半導體與電解液的能帶 25 2.8.2 Mott-Schottky 方程式 27 2.9 光電化學電解水的理論效率 29 第三章 實驗步驟與方法 31 3.1 實驗藥品與耗材 31 3.2 實驗設備 31 3.3 實驗流程 31 3.4 實驗設備及分析儀器 33 3.4.1 濺鍍系統(Sputtering system) 33 3.4.2 恆電位分析儀 (AutoLab Potentiostat) 35 3.4.3 電源電表keithley 2400 35 3.4.4 多功能X光薄膜繞射儀 36 3.4.5 高解析電子顯微鏡(high resolution scanning electron microscopy, HR-SEM) 37 3.4.6 X光光電子能譜儀(X-ray Photoelectron Spectrometer, XPS) 38 3.5 氧化鋅試片的製備 39 3.5.1 RF磁控濺鍍成長氧化鋅薄膜 39 3.5.2 水熱法成長氧化鋅奈米柱 39 3.5.3 水溶液法銻摻雜氧化鋅奈米柱 40 3.5.4 製備氧化鋅光電化學陽極試片 40 3.6 光電化學系統的實驗架設 42 3.7 ZnO試片上的施力裝置 43 第四章 實驗結果與討論 45 4.1 氧化鋅之材料分析 45 4.1.1 氧化鋅奈米柱之SEM分析 45 4.1.2 氧化鋅奈米柱之XRD分析 47 4.2 氧化鋅奈米柱的光電化學分析 48 4.2.1 氧化鋅奈米柱的壓電效應與光電化學反應 50 4.2.2 氧化鋅奈米柱產氫效率隨壓電效應之變化 55 4.3 氧化鋅奈米柱壓電效應改變PEC性質之機制 58 4.4 銻摻雜氧化鋅奈米柱材料分析 60 4.4.1 摻雜Sb的ZnO奈米柱之SEM分析 60 4.4.2 Sb摻雜ZnO奈米柱的EDX分析 62 4.4.3 摻雜Sb的氧化鋅奈米柱之XRD分析 63 4.4.4 摻雜Sb的ZnO奈米柱之XPS分析 65 4.4.5 摻雜Sb的ZnO奈米柱之UV-Vis光譜分析 68 4.5 銻摻雜氧化鋅奈米柱的光電化學反應 70 4.5.1 銻摻雜氧化鋅奈米柱壓電效應與光電化學反應 71 4.5.2 銻摻雜氧化鋅奈米柱產氫效率隨壓電效應之變化 74 4.6 Mott-Schottky圖之能帶結構分析 77 4.6.1 未摻雜的氧化鋅奈米柱之Mott-Schottky圖 77 4.6.2 摻雜銻的氧化鋅奈米柱之Mott-Schottky圖 79 4.7 銻摻雜氧化鋅奈米柱壓電性質改變PEC性質之機構 81 4.7.1 電解液與半導體界面能帶結構 81 4.7.2 半導體與ITO電極界面處能帶變化 83 第五章 結論 85 第六章 參考文獻 86

    [1] M. I. Hoffert. "Farewell to Fossil Fuels?". Science, (2010).
    [2] A. Kudo & Y. Miseki. "Heterogeneous photocatalyst materials for water splitting". Chem Soc Rev 38, 253-278, (2009).
    [3] S. E. Hosseini & M. A. Wahid. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development". Renewable and Sustainable Energy Reviews 57, 850-866, (2016).
    [4] J. D. Holladay, J. Hu, D. L. King & Y. Wang. "An overview of hydrogen production technologies". Catalysis Today 139, 244-260, (2009).
    [5] D. L. Jiang, H. J. Zhao, Z. B. Jia, J. L. Cao & R. John. "Photoelectrochemical behaviour of methanol oxidation at nanoporous TiO2 film electrodes". Journal of Photochemistry and Photobiology a-Chemistry 144, 197-204, (2001).
    [6] A. A. Ismail & D. W. Bahnemann. "Photochemical splitting of water for hydrogen production by photocatalysis: A review". Solar Energy Materials and Solar Cells 128, 85-101, (2014).
    [7] A. F. a. K. Honda. "Electrochemical Photolysis of Water at a Semiconductor Electrode". Chemical Reviews, (1972).
    [8] X. Chen, Z. Zhang, L. Chi, A. K. Nair, W. Shangguan & Z. Jiang. "Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems". Nano-Micro Letters 8, 1-12, (2015).
    [9] C. Xing, Y. Zhang, W. Yan & L. Guo. "Band structure-controlled solid solution of Cd1-xCd1-x ZnxSZnxS photocatalyst for hydrogen production by water splitting". International Journal of Hydrogen Energy 31, 2018-2024, (2006).
    [10] X. Li, J. Yu, J. Low, Y. Fang, J. Xiao & X. Chen. "Engineering heterogeneous semiconductors for solar water splitting". J. Mater. Chem. A 3, 2485-2534, (2015).
    [11] S. Xu & Z. L. Wang. "One-dimensional ZnO nanostructures: Solution growth and functional properties". Nano Research 4, 1013-1098, (2011).
    [12] I. Gonzalez-Valls & M. Lira-Cantu. "Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review". Energy Environ. Sci. 2, 19-34, (2009).
    [13] A. Janotti & C. G. Van de Walle. "Fundamentals of zinc oxide as a semiconductor". Reports on Progress in Physics 72, 126501, (2009).
    [14] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho & H. Morkoç. "A comprehensive review of ZnO materials and devices". Journal of Applied Physics 98, 041301, (2005).
    [15] C. Pan, M. Chen, R. Yu, Q. Yang, Y. Hu, Y. Zhang & Z. L. Wang. "Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging". Advanced materials 28, 1535-1552, (2016).
    [16] H. Zhang, G. Chen & D. W. Bahnemann. "Photoelectrocatalytic materials for environmental applications". Journal of Materials Chemistry 19, 5089, (2009).
    [17] X. C. S. S. L. Guo. "Semiconductor-based Photocatalytic Hydrogen Generation". Chemical Reviews 110, 6503-6570, (2010).
    [18] H. Pan. "Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting". Renewable and Sustainable Energy Reviews 57, 584-601, (2016).
    [19] E. L. W. M. G. Walter, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis. "Solar water splitting cell". Chemical Reviews, (2010).
    [20] M. Grätzel. "Photoeletrochemical cells". Nature, (2001).
    [21] A. L. H. Mills, Stephen. "An overview of semiconductor photocatalysis". Journal of Photochemistry and Photobiology A: Chemistry 108, 1-35, (1997).
    [22] L. J. Minggu, W. R. Wan Daud & M. B. Kassim. "An overview of photocells and photoreactors for photoelectrochemical water splitting". International Journal of Hydrogen Energy 35, 5233-5244, (2010).
    [23] Z. L. Wang. "Progress in piezotronics and piezo-phototronics". Advanced materials 24, 4632-4646, (2012).
    [24] Z. L. Wang. "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics". Nano Today 5, 540-552, (2010).
    [25] J. Shi, M. B. Starr, H. Xiang, Y. Hara, M. A. Anderson, J. H. Seo, Z. Ma & X. Wang. "Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode". Nano Lett 11, 5587-5593, (2011).
    [26] D. Damjanovic. "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics". Reports on Progress in Physics 61, 1267-1324, (1998).
    [27] M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal & E. Y. Tsymbal. "Giant Electroresistance in Ferroelectric Tunnel Junctions". Physical review letters 94, (2005).
    [28] J. Shi, M. B. Starr & X. Wang. "Band structure engineering at heterojunction interfaces via the piezotronic effect". Advanced materials 24, 4683-4691, (2012).
    [29] J. G. Zhou, Yudong; Fei, Peng. "Flexible piezotronic strain sensor". Nano Lett 8, 3035-3040, (2008).
    [30] S. Baruah & J. Dutta. "Hydrothermal growth of ZnO nanostructures". Science and technology of advanced materials 10, 013001, (2009).
    [31] G. Xiong, J. Wilkinson, B. Mischuck, S. Tüzemen, K. B. Ucer & R. T. Williams. "Control of p- and n-type conductivity in sputter deposition of undoped ZnO". Applied Physics Letters 80, 1195-1197, (2002).
    [32] H. von Wenckstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne, M. Lorenz, M. Grundmann & G. Brauer. "Deep acceptor states in ZnO single crystals". Applied Physics Letters 89, 092122, (2006).
    [33] S. Limpijumnong, S. B. Zhang, S. H. Wei & C. H. Park. "Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide". Physical review letters 92, 155504, (2004).
    [34] H. GERISCHER. "The impact of semiconductor on the concepts of electrochemistry". ELECTROCHIMICA ACTA 35, 1677-1699, (1990).
    [35] K. Gelderman, L. Lee & S. W. Donne. "Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation". Journal of Chemical Education 84, 685, (2007).
    [36] J. E. Stolken, AG. "A microbend test method for measuring the plasticity length scale". ACTA MATERIALIA 46, 5109-5115, (1998).
    [37] Y. Wang, Y. Chen, W. Zhao, L. Ding, L. Wen, H. Li, F. Jiang, J. Su, L. Li, N. Liu & Y. Gao. "A Self-Powered Fast-Response Ultraviolet Detector of p–n Homojunction Assembled from Two ZnO-Based Nanowires". Nano-Micro Letters 9, (2016).
    [38] A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim & K. Y. Rajpure. "Sensing properties of sprayed antimony doped tin oxide thin films: Solution molarity". Journal of Alloys and Compounds 509, 3108-3115, (2011).
    [39] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao & J. Z. Zhang. "Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting". Advanced Functional Materials 19, 1849-1856, (2009).
    [40] Y. Cheng, K. Yang, J. Chen, L. Che & X. Zhang. "Influence of molar ratio of Sb/Zn on the crystal, electrical and optical properties of Sb-doped ZnO films". Journal of Alloys and Compounds 699, 690-694, (2017).
    [41] S. Y. Huang, Q. J. Cheng, S. Xu, D. Y. Wei, H. P. Zhou, J. D. Long, I. Levchenko & K. Ostrikov. "Self-organized ZnO nanodot arrays: Effective control using SiN x interlayers and low-temperature plasmas". Journal of Applied Physics 111, 1-4, (2012).
    [42] R. Nasser, W. B. H. Othmen, H. Elhouichet & M. Férid. "Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity". Applied Surface Science 393, 486-495, (2017).
    [43] H. Zhao, J. Tang, Q. Lai, G. Cheng, Y. Liu & R. Chen. "Enhanced visible light photocatalytic performance of Sb-doped (BiO)2CO3 nanoplates". Catalysis Communications 58, 190-194, (2015).
    [44] S. A. A. M. M. Abd El-Raheem, M. A. Alharbi, and A. M. Badawi. "Structural and optical characterization of Sb-doped ZnO co-sputtered thin films". Journal of Optical Technology 83, 375, (2016).
    [45] J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He & B. H. Zhao. "Carrier concentration dependence of band gap shift in n-type ZnO:Al films". Journal of Applied Physics 101, 083705, (2007).
    [46] Y. Miao, Z. Ye, W. Xu, F. Chen, X. Zhou, B. Zhao, L. Zhu & J. Lu. "p-Type conduction in phosphorus-doped ZnO thin films by MOCVD and thermal activation of the dopant". Applied Surface Science 252, 7953-7956, (2006).
    [47] K. C. Pradel, W. Wu, Y. Zhou, X. Wen, Y. Ding & Z. L. Wang. "Piezotronic effect in solution-grown p-type ZnO nanowires and films". Nano Lett 13, 2647-2653, (2013).
    [48] S. Lu, J. Qi, Y. Gu, S. Liu, Q. Xu, Z. Wang, Q. Liang & Y. Zhang. "Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction". Nanoscale 7, 4461-4467, (2015).
    [49] P. Lin, Y. Gu, X. Yan, S. Lu, Z. Zhang & Y. Zhang. "Illumination-dependent free carrier screening effect on the performance evolution of ZnO piezotronic strain sensor". Nano Research 9, 1091-1100, (2016).
    [50] K. Karmakar, A. Sarkar, K. Mandal & G. G. Khan. "Stable and Enhanced Visible-Light Water Electrolysis Using C, N, and S Surface Functionalized ZnO Nanorod Photoanodes: Engineering the Absorption and Electronic Structure". ACS Sustainable Chemistry & Engineering 4, 5693-5702, (2016).
    [51] M. Liu, J. L. Lyons, D. Yan & M. S. Hybertsen. "Semiconductor-Based Photoelectrochemical Water Splitting at the Limit of Very Wide Depletion Region". Advanced Functional Materials 26, 219-225, (2016).

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE