簡易檢索 / 詳目顯示

研究生: 蕭立文
Hsiao, Li-Wen
論文名稱: 利用乳化反應製備交聯共聚高分子奈米膠
Synthesis of Nanogels Based on Cross-linked Copolymers Using Emulsion
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 150
中文關鍵詞: 奈米膠聚胺基酸乳化反應交聯反應
外文關鍵詞: nanogels, polypeptide, emulsion, cross-link
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功合成均聚賴胺酸(homo-poly(L-lysine),PLL)、聚乙二醇與聚賴胺酸嵌段共聚物(PEG-b-poly(L-lysine),PEG-b-PLL)、聚賴胺酸與聚蘇胺酸嵌段共聚物(poly(L-lysine)-b-poly(L-threonine),PLL-b-PLT)以及聚賴胺酸與聚肌胺酸嵌段共聚物(poly(L-lysine)-b-poly(sarcosine),PLL-b-PSar)。將聚胺酸藉由油中液滴型乳化反應(water-in-oil emulsion)與京尼平(genipin)交聯鍵結,製備生物相容性高的奈米膠體粒子。聚胺酸奈米膠體粒子具有穩定立體網狀結構,相較於傳統載體可提升藥物/蛋白質的裝載比例。透過調控聚胺基酸種類、嵌段共聚比例、交聯程度、聚胺基酸重量百分比濃度以及裝載的蛋白質含量等,設計不同性質的奈米膠體。本研究製備包覆肌紅蛋白(Myoglobin)的奈米膠載體,以1H NMR、MALDI-TOF、GPC、FT-IR、CD、DLS、Zeta Potential、MTT與UV/vis spectrum分別進行聚胺基酸與奈米膠體粒子的分析鑑定。由實驗結果可知PLL-b-PSar系列的奈米膠粒徑最小(119.6 ±1.9 nm)且粒徑分布較其他聚胺酸系列製備的奈米膠窄(0.32 ±0.02),經由細胞毒性測試證實其生物相容性高。裝載肌紅蛋白的奈米膠PLL33-b-PSar50-0.43Mb粒徑為197.7 ±8.9 nm,PDI則為0.25 ±0.02,並使用UV/vis 確認肌紅蛋白仍具有生物功能,表示利用乳化反應製備交聯共聚高分子奈米膠深具做為蛋白質載體的潛力。

    We report the synthesis of biocompatible nanogels based on cross-linked, double hydrophilic block copolymer by using emulsion. Nanogels, which are three-dimensional polymeric networks, can provide advantages for delivery system because that the interior structure accommodate biomolecules like drug, protein, or enzyme. Nanogels with different functionalities can be designed through varying polymer composition, block ratio, and cross-linking degree. These nanogels were used to encapsulate proteins and the encapsulated proteins can still retain its bioactivities. The results suggested that these as-prepared nanogels would have potential applications in areas such as drug carriers and encapsulants.

    摘要 i Extended Abstract ii 誌謝 xii 目錄 xiv 表目錄 xviii 圖目錄 xx 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究構想 3 第二章 文獻回顧 5 2.1 聚胺基酸 5 2.1.1 胺基酸的基本性質 5 2.1.2 胺基酸與蛋白質之結構 8 2.1.3 胺基酸之聚合反應 10 2.2 奈米膠 14 2.2.1 奈米膠之定義 14 2.2.2 奈米膠之種類 15 2.3 交聯反應 18 2.4 奈米膠之應用 22 2.4.1 藥物/蛋白質載體 23 2.4.2 肌紅蛋白之特性 24 第三章 實驗方法與步驟 26 3.1 實驗藥品 26 3.2 聚胺基酸合成 29 3.2.1 開環聚合法N-carboxylanhydrides (NCAs) 29 3.2.2 乾燥溶劑 29 3.2.3 Z-L-lysine NCAs製備 30 3.2.4 N-Boc-O-benzyl-L-threonine NCAs之製備 31 3.2.5 Sarcosine NCAs之製備 33 3.2.6 利用不同起始劑對NCAs開環合成聚胺基酸 36 3.2.7 去除聚胺基酸的保護基 39 3.3 奈米膠之製備 41 3.3.1 奈米膠之乳化製程 41 3.3.2 奈米膠之實驗參數 42 3.4 奈米膠之應用 44 3.4.1 奈米膠裝載肌紅蛋白(Myoglobin) 44 3.4.2 奈米膠裝載肌紅蛋白之實驗參數 45 3.5 實驗儀器與原理 47 3.5.1 液態核磁共振儀(1H NMR) 47 3.5.2 基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF) 48 3.5.3 凝膠滲透層析儀(GPC) 49 3.5.4 傅立葉轉換紅外線光譜儀(FT-IR) 50 3.5.5 圓二色光譜儀(CD) 52 3.5.6 動態光散射儀(DLS) 54 3.5.7 介達電位分析儀 55 3.5.8 穿透式電子顯微鏡(TEM) 56 3.5.9 紫外光/可見光光譜儀(UV/vis) 57 3.6 聚胺基酸與奈米膠之性質測試參數 58 3.6.1 液態核磁共振儀(1H NMR) 58 3.6.2 基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF) 58 3.6.3 凝膠滲透層析儀(GPC) 59 3.6.4 傅立葉轉換紅外線光譜儀(FT-IR) 59 3.6.5 圓二色光譜儀(CD) 59 3.6.6 動態光散射儀(DLS) 60 3.6.7 穿透式電子顯微鏡(TEM) 60 3.6.8 穩定性測試 60 3.6.9 細胞毒性測試 61 第四章 結果與討論 63 4.1 聚胺基酸之分析 63 4.1.1 聚胺基酸之聚合度 64 4.1.2 聚胺基酸之分子量 75 4.1.3 聚胺基酸之二級結構 82 4.2 奈米膠之分析 87 4.2.1 奈米膠之形成 87 4.2.2 奈米膠之粒徑 90 4.2.3 奈米膠之穩定性 106 4.2.4 奈米膠之二級結構 110 4.2.5 奈米膠之介達電位 120 4.2.6 奈米膠之細胞毒性測試 126 4.3 奈米膠肌紅蛋白載體之分析 128 4.3.1 奈米膠肌紅蛋白載體之形成 128 4.3.2 奈米膠肌紅蛋白載體之粒徑 129 4.3.3 奈米膠肌紅蛋白載體之包覆率 131 4.3.4 奈米膠肌紅蛋白載體之生物功能 133 第五章 結論 136 第六章 參考文獻 139

    1. Du, J.; Tian, C.; Liu, Y.; Ling, J.; Wang, Y., Azo-capped polysarcosine-b-polylysine as polypeptide gene vector: A new strategy to improve stability and easy optimization via host–guest interaction. Colloids and Surfaces B: Biointerfaces 2015, 130, 31-39.
    2. Deming, T. J., Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2014, 6 (3), 283-297.
    3. Papahadjopoulos, D.; Allen, T. M.; Gabizon, A.; Mayhew, E.; Matthay, K.; Huang, S. K.; Lee, K. D.; Woodle, M. C.; Lasic, D. D.; Redemann, C., Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America 1991, 88 (24), 11460-11464.
    4. Makino, A.; Kizaka-Kondoh, S.; Yamahara, R.; Hara, I.; Kanzaki, T.; Ozeki, E.; Hiraoka, M.; Kimura, S., Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(l-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide. Biomaterials 2009, 30 (28), 5156-5160.
    5. Hara, E.; Ueda, M.; Kim, C. J.; Makino, A.; Hara, I.; Ozeki, E.; Kimura, S., Suppressive immune response of poly‐(sarcosine) chains in peptide‐nanosheets in contrast to polymeric micelles. Journal of Peptide Science 2014, 20 (7), 570-577.
    6. Barz, M.; Luxenhofer, R.; Zentel, R.; Vicent, M. J., Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics. Polymer Chemistry 2011, 2 (9), 1900-1918.
    7. Vriezema, D. M.; Garcia, P. M.; Sancho Oltra, N.; Hatzakis, N. S.; Kuiper, S. M.; Nolte, R. J.; Rowan, A. E.; van Hest, J., Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angewandte Chemie 2007, 119 (39), 7522-7526.
    8. Fetsch, C.; Grossmann, A.; Holz, L.; Nawroth, J. F.; Luxenhofer, R., Polypeptoids fromN-Substituted GlycineN-Carboxyanhydrides: Hydrophilic, Hydrophobic, and Amphiphilic Polymers with Poisson Distribution. Macromolecules 2011, 44 (17), 6746-6758.
    9. Berg JM, T. J., Stryer L., Biochemistry. 2002.
    10. Nelson, D. L.; Lehninger, A. L.; Cox, M. M., Lehninger principles of biochemistry. Macmillan: 2008.
    11. Ambrogelly, A.; Palioura, S.; Söll, D., Natural expansion of the genetic code. Nature chemical biology 2007, 3 (1), 29-35.
    12. Rodnina, M. V.; Beringer, M.; Wintermeyer, W., How ribosomes make peptide bonds. Trends in biochemical sciences 2007, 32 (1), 20-26.
    13. Dobson, C. M., The nature and significance of protein folding. Mechanisms of protein folding 2000, 1-33.
    14. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
    15. Cheng, J.; Deming, T. J., Synthesis of polypeptides by ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Topics in current chemistry 2012, 310, 1-26.
    16. Kricheldorf, H. R., Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angewandte Chemie 2006, 45 (35), 5752-84.
    17. Daly, W. H.; Poché, D., The preparation of N-carboxyanhydrides of α-amino acids using bis (trichloromethyl) carbonate. Tetrahedron Letters 1988, 29 (46), 5859-5862.
    18. Poche, D. S.; Moore, M. J.; Bowles, J. L., An unconventional method for purifying the N-carboxyanhydride derivatives of γ-alkyl-L-glutamates. Synthetic communications 1999, 29 (5), 843-854.
    19. Deming, T. J., Living polymerization of α‐amino acid‐N‐carboxyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38 (17), 3011-3018.
    20. Lau, K. H. A.; Ren, C.; Sileika, T. S.; Park, S. H.; Szleifer, I.; Messersmith, P. B., Surface-grafted polysarcosine as a peptoid antifouling polymer brush. Langmuir : the ACS journal of surfaces and colloids 2012, 28 (46), 16099-16107.
    21. Vinogradov, S. V.; Bronich, T. K.; Kabanov, A. V., Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Advanced drug delivery reviews 2002, 54 (1), 135-147.
    22. Zhang, H.; Zhai, Y.; Wang, J.; Zhai, G., New progress and prospects: The application of nanogel in drug delivery. Materials science & engineering. C, Materials for biological applications 2016, 60, 560-8.
    23. Kabanov, A. V.; Vinogradov, S. V., Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angewandte Chemie 2009, 48 (30), 5418-29.
    24. Hamidi, M.; Azadi, A.; Rafiei, P., Hydrogel nanoparticles in drug delivery. Advanced drug delivery reviews 2008, 60 (15), 1638-1649.
    25. Raemdonck, K.; Demeester, J.; De Smedt, S., Advanced nanogel engineering for drug delivery. Soft Matter 2009, 5 (4), 707-715.
    26. An, Z.; Qiu, Q.; Liu, G., Synthesis of architecturally well-defined nanogels viaRAFT polymerization for potential bioapplications. Chemical Communications 2011, 47 (46), 12424-12440.
    27. Siegwart, D. J.; Srinivasan, A.; Bencherif, S. A.; Karunanidhi, A.; Jung, K. O.; Vaidya, S.; Jin, R.; Hollinger, J. O.; Matyjaszewski, K., Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Biomacromolecules 2009, 10 (8), 2300-2309.
    28. Shewan, H. M.; Stokes, J. R., Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. Journal of Food Engineering 2013, 119 (4), 781-792.
    29. Shidhaye, S.; Lotlikar, V.; Malke, S.; Kadam, V., Nanogel engineered polymeric micelles for drug delivery. Current Drug Therapy 2008, 3 (3), 209-217.
    30. Singh, S.; Topuz, F.; Hahn, K.; Albrecht, K.; Groll, J., Embedding of Active Proteins and Living Cells in Redox‐Sensitive Hydrogels and Nanogels through Enzymatic Cross‐Linking. Angewandte Chemie International Edition 2013, 52 (10), 3000-3003.
    31. Tamura, A.; Oishi, M.; Nagasaki, Y., Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: Enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core. Journal of Controlled Release 2010, 146 (3), 378-387.
    32. Jin, Q.; Liu, G.; Ji, J., Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. European Polymer Journal 2010, 46 (11), 2120-2128.
    33. Cao, X. T.; Showkat, A. M.; Lim, K. T., Synthesis of nanogels of poly(ε-caprolactone)-b-poly(glycidyl methacrylate) by click chemistry in direct preparation. European Polymer Journal 2015, 68, 267-277.
    34. Tsai, C. C.; Lin, C. K.; Liang, I. L.; Chen, I. C.; Chen, C. N.; Sung, H. W., Purification of a naturally occurring crosslinking reagent (genipin) from gardenia fruits and investigation on its stability. Chinese Journal of Medical and Biological Engineering 1999, 19 (1), 29-37.
    35. Nimni, M. E.; Cheung, D.; Strates, B.; Kodama, M.; Sheikh, K., Chemically modified collagen: A natural biomaterial for tissue replacement. Journal of Biomedical Materials Research 1987, 21 (6), 741-771.
    36. Rosenberg, D., Dialdehyde starch tanned bovine heterograft: development. ; Appleton-Century-Crofts. 1978.
    37. Tu, R.; Lu, C. L.; Thyagarajan, K.; Wang, E.; Nguyen, H.; Shen, S.; Hata, C.; Quijano, R. C., Kinetic study of collagen fixation with polyepoxy fixatives. Journal of Biomedical Materials Research 1993, 27 (1), 3-9.
    38. Nishi, C.; Nakajima, N.; Ikada, Y., In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res 1995, 29 (7), 829-34.
    39. Tu, R.; Quijano, R. C.; Lu, C. L.; Shen, S.; Wang, E.; Hata, C.; Lin, D., A preliminary study of the fixation mechanism of collagen reaction with a polyepoxy fixative. International Journal of Artificial Organs 1993, 16 (7), 537-544.
    40. Djerassi, C.; Gray, J. D.; Kincl, F. A., Naturally Occurring Oxygen Heterocyclics. IX.1 Isolation and Characterization of Genipin2. The Journal of Organic Chemistry 1960, 25 (12), 2174-2177.
    41. Juangsu New Medical College, Z. Y. D. C. D. D. o.; Chinese Materia Medical), S. S. a. T.; Publishers, S., 15, 1985.
    42. Liu, S.-T.; Tuan-Mu, H.-Y.; Hu, J.-J.; Jan, J.-S., Genipin cross-linked PEG-block-poly(l-lysine)/disulfide-based polymer complex micelles as fluorescent probes and pH-/redox-responsive drug vehicles. RSC Advances 2015, 5 (106), 87098-87107.
    43. Touyama, R.; Takeda, Y.; Inoue, K.; Kawamura, I.; Yatsuzuka, M.; Ikumoto, T.; Shincu, T.; Yokoi, T.; Inouye, H., Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chemical and Pharmaceutical Bulletin 1994, 42 (3), 668-673.
    44. Yamano, T.; Tsujimoto, Y.; Noda, T.; Shimizu, M.; Ohmori, M.; Morita, S.; Yamada, A., Hepatotoxicity of geniposide in rats. Food and Chemical Toxicology 1990, 28 (7), 515-519.
    45. Touyama, R.; Inoue, K.; Takeda, Y.; Yatsuzuka, M.; Ikumoto, T.; Moritome, N.; Shingu, T.; Yokoi, T.; Inouye, H., Studies on the blue pigments produced from genipin and methylamine. II. On the formation mechanisms of brownish-red intermediates leading to the blue pigment formation. Chemical and Pharmaceutical Bulletin 1994, 42 (8), 1571-1578.
    46. Chen, H.; Ouyang, W.; Lawuyi, B.; Prakash, S., Genipin cross-linked alginate-chitosan microcapsules: membrane characterization and optimization of cross-linking reaction. Biomacromolecules 2006, 7 (7), 2091-2098.
    47. Gajria, C.; Ozari, Y., Water-swellable crosslinked polymeric microgel particles and aqueous dispersions of organic film-forming resins containing the same. Google Patents: 1985.
    48. Biffis, A., Functionalised microgels: novel stabilisers for catalytically active metal colloids. Journal of Molecular Catalysis A: Chemical 2001, 165 (1), 303-307.
    49. Peppas, N.; Bures, P.; Leobandung, W.; Ichikawa, H., Hydrogels in pharmaceutical formulations. European journal of pharmaceutics and biopharmaceutics 2000, 50 (1), 27-46.
    50. Kim, J. O.; Oberoi, H. S.; Desale, S.; Kabanov, A. V.; Bronich, T. K., Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: synthesis, characterization and implications for anticancer drug delivery. Journal Of Drug Targeting 2013, 21 (10), 981-993.
    51. Senior, J.; Delgado, C.; Fisher, D.; Tilcock, C.; Gregoriadis, G., Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly (ethylene glycol)-coated vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1991, 1062 (1), 77-82.
    52. Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K., The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science 2008, 33 (4), 448-477.
    53. Fang, J.; Nakamura, H.; Maeda, H., The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews 2011, 63 (3), 136-51.
    54. Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K., Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology 2011, 6 (12), 815-823.
    55. Cabral, H.; Makino, J.; Matsumoto, Y.; Mi, P.; Wu, H.; Nomoto, T.; Toh, K.; Yamada, N.; Higuchi, Y.; Konishi, S.; Kano, M. R.; Nishihara, H.; Miura, Y.; Nishiyama, N.; Kataoka, K., Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano 2015, 9 (5), 4957-4967.
    56. Amyot, S. L.; Leblanc, M.; Thibeault, Y.; Geadah, D.; Cardinal, J., Myoglobin clearance and removal during continuous venovenous hemofiltration. Intensive Care Medicine 1999, 25 (10), 1169-1172.
    57. Takano, T., Structure of myoglobin refined at 2•0 Å resolution. II. Structure of deoxymyoglobin from sperm whale. Journal of Molecular Biology 1977, 110 (3), 569-584.
    58. Huang, Y.-C.; Arham, M.; Jan, J.-S., Alkyl chain grafted poly(l-lysine): self-assembly and biomedical application as carriers. Soft Matter 2011, 7 (8), 3975.
    59. A. Carlsen and S. Lecommandoux, C. O. C. I. S., 2009, 14, 329–339.
    60. Kishimura, A.; Koide, A.; Osada, K.; Yamasaki, Y.; Kataoka, K., Encapsulation of Myoglobin in PEGylated Polyion Complex Vesicles Made from a Pair of Oppositely Charged Block Ionomers: A Physiologically Available Oxygen Carrier. Angewandte Chemie International Edition 2007, 46 (32), 6085-6088.
    61. Gibson, M. I.; Cameron, N. R., Experimentally facile controlled polymerization ofN-carboxyanhydrides (NCAs), includingO-benzyl-L-threonine NCA. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (11), 2882-2891.
    62. Heller, P.; Birke, A.; Huesmann, D.; Weber, B.; Fischer, K.; Reske-Kunz, A.; Bros, M.; Barz, M., Introducing PeptoPlexes: Polylysine-block-Polysarcosine Based Polyplexes for Transfection of HEK 293T Cells. Macromolecular bioscience 2014, 14 (10), 1380-1395.
    63. Singh, S.; Topuz, F.; Hahn, K.; Albrecht, K.; Groll, J., Embedding of active proteins and living cells in redox-sensitive hydrogels and nanogels through enzymatic cross-linking. Angew. Chem. Int. Ed. 2013, 52 (10), 3000-3003.
    64. John B. Fenn, M. M., Chin Kai Meng, Shek Fu Wong,Craig M. Whitethouse, Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science, 64-71.
    65. Ruedi Aebersold , M. M., Mass spectrometry-based proteomics. NATURE,VOL 422
    66. Garidel, P., Fourier-transform midinfrared spectroscopy for analysis and screening of liquid protein formulations. BioProcess international 2006, 48.
    67. Uzawa, T.; Nishimura, C.; Akiyama, S.; Ishimori, K.; Takahashi, S.; Dyson, H. J.; Wright, P. E., Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (37), 13859-13864.
    68. Forood, B.; Feliciano, E. J.; Nambiar, K. P., STABILIZATION OF ALPHA-HELICAL STRUCTURES IN SHORT PEPTIDES VIA END CAPPING. Proceedings of the National Academy of Sciences of the United States of America 1993, 90 (3), 838-842.
    69. Mörters, P. P., Y., Brownian Motion. 2008.
    70. BJ Berne, R. P., Dynamic light scattering: with applications to chemistry, biology, and physics. 1976.
    71. Mavrogiorgis, D.; Bilalis, P.; Karatzas, A.; Skoulas, D.; Fotinogiannopoulou, G.; Iatrou, H., Controlled polymerization of histidine and synthesis of well-defined stimuli responsive polymers. Elucidation of the structure-aggregation relationship of this highly multifunctional material. Polymer Chemistry 2014, 5 (21), 6256-6278.
    72. Kanzaki, T.; Horikawa, Y.; Makino, A.; Sugiyama, J.; Kimura, S., Nanotube and Three‐Way Nanotube Formation with Nonionic Amphiphilic Block Peptides. Macromolecular bioscience 2008, 8 (11), 1026-1033.
    73. Carlsen, A.; Lecommandoux, S., Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 2009, 14 (5), 329-339.
    74. LoPresti, C.; Lomas, H.; Massignani, M.; Smart, T.; Battaglia, G., Polymersomes: nature inspired nanometer sized compartments. Journal of Materials Chemistry 2009, 19 (22), 3576-3590.
    75. Mrabet, B.; Nguyen, M. N.; Majbri, A.; Mahouche, S.; Turmine, M.; Bakhrouf, A.; Chehimi, M. M., Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surface Science 2009, 603 (16), 2422-2429.
    76. Chiono, V.; Pulieri, E.; Vozzi, G.; Ciardelli, G.; Ahluwalia, A.; Giusti, P., Genipin-crosslinked chitosan/gelatin blends for biomedical applications. Journal Of Materials Science. Materials In Medicine 2008, 19 (2), 889-898.
    77. Todaro, G. J.; Green, H., Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. The Journal of Cell Biology 1963, 17 (2), 299-313.
    78. Tao, X.; Deng, C.; Ling, J., PEG-amine-initiated polymerization of sarcosine N-thiocarboxyanhydrides toward novel double-hydrophilic PEG-b-polysarcosine diblock copolymers. Macromolecular rapid communications 2014, 35 (9), 875-81.

    下載圖示 校內:2021-07-17公開
    校外:2021-07-17公開
    QR CODE