| 研究生: |
簡孟芝 Chien, Meng-Chih |
|---|---|
| 論文名稱: |
同質接面δ/γ相氧化鉍的製備與光催化降解羅丹明B染料之研究 Preparation of δ/γ-Bi2O3 homo-junction and its photocatalytic degradation activity of Rhodamine B dye |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 氧化鉍 、反滴定法 、同質接面 、光催化降解 、電荷轉移 |
| 外文關鍵詞: | Bi2O3, reprecipitation, photocatalysis, de-ethylation, homojunction |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究比較了反滴定法與反向化學沉澱法兩個製程對於氧化鉍之相組成差異,使用反向化學沉澱法以不同反應環境濃度在室溫下合成3個不同相組成比例的混合相δ/γ-Bi2O3,吸收光譜結果發現兩相的吸收波段均落在可見光範圍內,可利用可見光作為光催化的能量來源,PL光譜分析可證實混合相可降低電子電洞復合率且δ/γ-Bi2O3在特定相組成比例下的樣品DG(95 %的δ及5 %的γ)展現出比純δ-Bi2O3更高的羅丹明染料降解效率。透過比對實驗結果與兩相能帶結構推測降解反應機制,發現電洞與超氧離子為 Bi2O3 降解羅丹明B系統之主要活性反應因子;亦確認兩相接面間光激發載子的移動方向,激發後電子 δ-Bi2O3 由移動至γ-Bi2O3,而電洞則是相反方向,且因兩相價帶位能差異,有效使電子電洞分離,提高降解RhB的效能。
The present study demonstrates the synthesis of δ/γ mixed phase bismuth (III) oxide (Bi2O3) at room temperature using a reprecipitation method. Photoluminescence spectroscopic analysis confirms that the mixed phase could form the homojunction to reduce the electron–hole pair recombination rate and that δ/γ Bi2O3 under a specific phase composition ratio (δ : γ = 95:5) exhibits higher Rhodamine B dye degradation than pure δ-Bi2O3 and γ-Bi2O3, respectively. By comparing the experimental results and the two-phase energy band structure to speculate the degradation reaction mechanism, this study finds that the holes and superoxide ions are the main active reaction factors of the Bi2O3 degradation system for Rhodamine B.
[1] Zhu, S., Liang, S., Gu, Q., Xie, L., Wang, J., Ding, Z., & Liu, P. (2012). Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity. Applied Catalysis B: Environmental, 119, 146-155.
[2] Ahmad, H., Kamarudin, S. K., Minggu, L. J., & Kassim, M. (2015). Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews, 43, 599-610.
[3] Li, X., Yu, J., Jaroniec, M., & Chen, X. (2019). Cocatalysts for selective photoreduction of CO2 into solar fuels. Chemical reviews, 119(6), 3962-4179.
[4] Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale research letters, 12(1), 1-10.
[5] Shayegan, Z., Lee, C. S., & Haghighat, F. (2018). TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review. Chemical Engineering Journal, 334, 2408-2439.
[6] Prakash, K., Senthil Kumar, P., Pandiaraj, S., Saravanakumar, K., & Karuthapandian, S. (2016). Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. Journal of Experimental Nanoscience, 11(14), 1138-1155.
[7] Tahir, M. B., Nabi, G., Khalid, N. R., & Rafique, M. (2018). Role of europium on WO3 performance under visible-light for photocatalytic activity. Ceramics International, 44(5), 5705-5709.
[8] Liu, Z., Zhang, Y., Kong, L., Liu, L., Luo, J., Liu, B., ... & Wu, Z. (2019). Preparation and preferential photocatalytic degradation of acephate by using the composite photocatalyst Sr/TiO2-PCFM. Chemical Engineering Journal, 374, 852-862.
[9] Zheng, Z., Huang, B., Wang, Z., Guo, M., Qin, X., Zhang, X., ... & Dai, Y. (2009). Crystal faces of Cu2O and their stabilities in photocatalytic reactions. The Journal of Physical Chemistry C, 113(32), 14448-14453.
[10] Frame, F. A., Carroll, E. C., Larsen, D. S., Sarahan, M., Browning, N. D., & Osterloh, F. E. (2008). First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light. Chemical communications, (19), 2206-2208.
[11] Tang, J., Zou, Z., & Ye, J. (2004). Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible‐light irradiation. Angewandte Chemie, 116(34), 4563-4566.
[12] Chen, J., Chen, X., Zhang, X., Yuan, Y., Bi, R., You, F., ... & Yu, R. (2020). Nanostructured BiVO4 Derived from Bi-MOF for Enhanced Visible-light Photodegradation. Chemical Research in Chinese Universities, 36(1), 120-126.
[13] Kohtani, S., Makino, S., Kudo, A., Tokumura, K., Ishigaki, Y., Matsunaga, T., ... & Nakagaki, R. (2002). Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator: comparison between BiVO4 and TiO2 photocatalysts. Chemistry Letters, 31(7), 660-661.
[14] Tang, J., Zou, Z., & Ye, J. (2004). Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catalysis Letters, 92(1), 53-56.
[15] Jung, J. C., Lee, H., Kim, H., Chung, Y. M., Kim, T. J., Lee, S. J., ... & Song, I. K. (2008). Effect of oxygen capacity and oxygen mobility of pure bismuth molybdate and multicomponent bismuth molybdate on their catalytic performance in the oxidative dehydrogenation of n-butene to 1, 3-butadiene. Catalysis letters, 124(3), 262-267.
[16] Lei, B., Cui, W., Sheng, J., Wang, H., Chen, P., Li, J., ... & Dong, F. (2020). Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: intermediates activation, photocatalytic reaction efficiency, and conversion pathway. Science Bulletin, 65(6), 467-476.
[17] Brezesinski, K., Ostermann, R., Hartmann, P., Perlich, J., & Brezesinski, T. (2010). Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats. Chemistry of Materials, 22(10), 3079-3085.
[18] Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T., & Thurnauer, M. C. (2003). Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. The Journal of Physical Chemistry B, 107(19), 4545-4549.
[19] Henderson, M. A., Epling, W. S., Peden, C. H., & Perkins, C. L. (2003). Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110). The Journal of Physical Chemistry B, 107(2), 534-545.
[20] Li, F. B., Li, X. Z., Ao, C. H., Hou, M. F., & Lee, S. C. (2004). Photocatalytic conversion of NO using TiO2–NH3 catalysts in ambient air environment. Applied Catalysis B: Environmental, 54(4), 275-283.
[21] Gordon, T. R., Cargnello, M., Paik, T., Mangolini, F., Weber, R. T., Fornasiero, P., & Murray, C. B. (2012). Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. Journal of the American Chemical Society, 134(15), 6751-6761.
[22] Li, G., Chen, L., Graham, M. E., & Gray, K. A. (2007). A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: the importance of the solid–solid interface. Journal of Molecular Catalysis A: Chemical, 275(1-2), 30-35.
[23] Bickley, R. I., Gonzalez-Carreno, T., Lees, J. S., Palmisano, L., & Tilley, R. J. (1991). A structural investigation of titanium dioxide photocatalysts. Journal of Solid State Chemistry, 92(1), 178-190.
[24] Vásquez, G. C., Peche-Herrero, M. A., Maestre, D., Cremades, A., Ramirez-Castellanos, J., González-Calbet, J. M., & Piqueras, J. (2013). Effects of transition metal doping on the growth and properties of rutile TiO2 nanoparticles. The Journal of Physical Chemistry C, 117(4), 1941-1947.
[25] Asahi, R. Y. O. J. I., Morikawa, T. A. K. E. S. H. I., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 293(5528), 269-271.
[26] Wu, W. Q., Lei, B. X., Rao, H. S., Xu, Y. F., Wang, Y. F., Su, C. Y., & Kuang, D. B. (2013). Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Scientific reports, 3(1), 1-7.
[27] Amidani, L., Naldoni, A., Malvestuto, M., Marelli, M., Glatzel, P., Dal Santo, V., & Boscherini, F. (2015). Probing Long‐Lived Plasmonic‐Generated Charges in TiO2/Au by High‐Resolution X‐ray Absorption Spectroscopy. Angewandte Chemie, 127(18), 5503-5506.
[28] Li, F., Gu, Q., Niu, Y., Wang, R., Tong, Y., Zhu, S., ... & Wang, X. (2017). Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO2 catalysts: Role of Pt and product distribution. Applied Surface Science, 391, 251-258.
[29] Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 392, 658-686.
[30] Lv, K., Fang, S., Si, L., Xia, Y., Ho, W., & Li, M. (2017). Fabrication of TiO2 nanorod assembly grafted rGO (rGO@ TiO2-NR) hybridized flake-like photocatalyst. Applied Surface Science, 391, 218-227.
[31] Sammes, N. M., Tompsett, G. A., Näfe, H., & Aldinger, F. (1999). Bismuth based oxide electrolytes—structure and ionic conductivity. Journal of the European Ceramic Society, 19(10), 1801-1826.
[32] Ai, Z., Huang, Y., Lee, S., & Zhang, L. (2011). Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. Journal of Alloys and Compounds, 509(5), 2044-2049.
[33] Huang, Y. J., Zheng, Y. Q., Zhu, H. L., & Wang, J. J. (2016). Hydrothermal synthesis of bismuth (III) coordination polymer and its transformation to nano α-Bi2O3 for photocatalytic degradation. Journal of Solid State Chemistry, 239, 274-281.
[34] Gou, X., Li, R., Wang, G., Chen, Z., & Wexler, D. (2009). Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology, 20(49), 495501.
[35] Roth, R. S., Hwang, N. M., Rawn, C. J., Burton, B. P., & Ritter, J. J. (1991). Phase Equilibria in the Systems CaO–CuO and CaO‐Bi2O3. Journal of the American Ceramic Society, 74(9), 2148-2151.
[36] Kruidhof, H., De Vries, K. J., & Burggraaf, A. J. (1990). Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions. Solid State Ionics, 37(2-3), 213-215.
[37] Monnereau, O., Tortet, L., Llewellyn, P., Rouquerol, F., & Vacquier, G. (2003). Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide ?. Solid State Ionics, 157(1-4), 163-169.
[38] Kumari, L., Lin, J. H., & Ma, Y. R. (2007). Synthesis of bismuth oxide nanostructures by an oxidative metal vapour phase deposition technique. Nanotechnology, 18(29), 295605.
[39] Gujar, T. P., Shinde, V. R., Lokhande, C. D., Mane, R. S., & Han, S. H. (2005). Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect. Applied surface science, 250(1-4), 161-167.
[40] Shaikh, S. M. F., Rahman, G., Mane, R. S., & Joo, O. S. (2013). Bismuth oxide nanoplates-based efficient DSSCs: Influence of ZnO surface passivation layer. Electrochimica Acta, 111, 593-600.
[41] Wang, Y., Jiang, L., Tang, D., Liu, F., & Lai, Y. (2015). Characterization of porous bismuth oxide (Bi2O3) nanoplates prepared by chemical bath deposition and post annealing. RSC Advances, 5(80), 65591-65594.
[42] Levin, E. M., & Roth, R. S. (1964). Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on the polymorphism of Bi2O3. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry, 68(2), 197.
[43] Poleti, D., Karanović, L., Zdujić, M., Jovalekić, Č., & Branković, Z. (2004). Mechanochemical synthesis of γ-Bi2O3. Solid state sciences, 6(3), 239-245.
[44] Turkoglu, O., & Belenli, I. (2003). Electrical conductivity of δ-Bi2O3-V2O5 solid solution. Journal of Thermal Analysis and Calorimetry, 73(3), 1001-1012.
[45] Jing, H., Chen, X., & Jiang, X. (2012). Controlled synthesis of bismuth oxide microtetrahedrons and cubes by precipitation in alcohol–water systems. Micro & Nano Letters, 7(4), 357-359.
[46] Maruthamuthu, P., Gurunathan, K., Subramanian, E., & Ashokkumar, M. (1991). Photocatalytic activities of Bi2O3, WO3, and Fe2O3: an assessment through decomposition of peroxomonosulfate in visible radiation. Bulletin of the Chemical Society of Japan, 64(6), 1933-1937.
[47] Malligavathy, M., & Padiyan, D. P. (2017). Role of pH in the hydrothermal synthesis of phase pure alpha Bi2O3 nanoparticles and its structural characterization. In Adv. Mat. Proc (Vol. 2, pp. 51-55).
[48] Abu-Dief, A. M., & Mohamed, W. S. (2017). α-Bi2O3 nanorods: synthesis, characterization and UV-photocatalytic activity. Materials Research Express, 4(3), 035039.
[49] Liu, G., Li, S., Lu, Y., Zhang, J., Feng, Z., & Li, C. (2016). Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→ γ-Bi2O3→ α-Bi2O3 transformation in a facile precipitation method. Journal of Alloys and Compounds, 689, 787-799.
[50] Hao, W., Gao, Y., Jing, X., Zou, W., Chen, Y., & Wang, T. (2014). Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphologies. Journal of Materials Science & Technology, 30(2), 192-196.
[51] Zhang, L., Hashimoto, Y., Taishi, T., Nakamura, I., & Ni, Q. Q. (2011). Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process. Applied surface science, 257(15), 6577-6582.
[52] Xiong, Y., Wu, M., Ye, J., & Chen, Q. (2008). Synthesis and luminescence properties of hand-like α-Bi2O3 microcrystals. Materials letters, 62(8-9), 1165-1168.
[53] Wu, C., Shen, L., Huang, Q., & Zhang, Y. C. (2011). Hydrothermal synthesis and characterization of Bi2O3 nanowires. Materials Letters, 65(7), 1134-1136.
[54] Chen, X. Y., Zhang, Z. J., & Lee, S. W. (2008). Selective solution-phase synthesis of BiOCl, BiVO4 and δ-Bi2O3 nanocrystals in the reaction system of BiCl3–NH4VO3–NaOH. Journal of Solid State Chemistry, 181(1), 166-174.
[55] Liu, L., Liu, W., Zhao, X., Chen, D., Cai, R., Yang, W., ... & Yang, D. (2014). Selective capture of iodide from solutions by microrosette-like δ-Bi2O3. ACS applied materials & interfaces, 6(18), 16082-16090.
[56] Han, M., Sun, T., Tan, P. Y., Chen, X., Tan, O. K., & Tse, M. S. (2013). m-BiVO 4@ γ-Bi2O3 core–shell p–n heterogeneous nanostructure for enhanced visible-light photocatalytic performance. Rsc Advances, 3(47), 24964-24970.
[57] Hernández-Gordillo, A., Medina, J. C., Bizarro, M., Zanella, R., Monroy, B. M., & Rodil, S. E. (2016). Photocatalytic activity of enlarged microrods of α-Bi2O3 produced using ethylenediamine-solvent. Ceramics International, 42(10), 11866-11875.
[58] Li, W. (2006). Facile synthesis of monodisperse Bi2O3 nanoparticles. Materials chemistry and physics, 99(1), 174-180.
[59] Zhou, Y., Shuai, L., Jiang, X., Jiao, F., & Yu, J. (2015). Visible-light-driven photocatalytic properties of layered double hydroxide supported-Bi2O3 modified by Pd (II) for methylene blue. Advanced Powder Technology, 26(2), 439-447.
[60] Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238(5358), 37-38.
[61] Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of hazardous materials, 170(2-3), 520-529.
[62] Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al‐Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced materials, 29(20), 1601694.
[63] Liu, Z., Wang, G., Chen, H. S., & Yang, P. (2018). An amorphous/crystalline g C3N4 homojunction for visible light photocatalysis reactions with superior activity. Chemical Communications, 54(37), 4720-4723.
[64] Kong, Y., Sun, H., Zhao, X., Gao, B., & Fan, W. (2015). Fabrication of hexagonal/cubic tungsten oxide homojunction with improved photocatalytic activity. Applied Catalysis A: General, 505, 447-455.
[65] Wang, R., Wan, J., Jia, J., Xue, W., Hu, X., Liu, E., & Fan, J. (2018). Synthesis of In2Se3 homojunction photocatalyst with α and γ phases for efficient photocatalytic performance. Materials & Design, 151, 74-82.
[66] Pan, L., Wang, S., Xie, J., Wang, L., Zhang, X., & Zou, J. J. (2016). Constructing TiO2 pn homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy, 28, 296-303.
[67] Ren, L., Li, Y., Mao, M., Lan, L., Lao, X., & Zhao, X. (2019). Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles. Applied Surface Science, 490, 283-292.
[68] Huang, H., Xiao, K., Du, X., & Zhang, Y. (2017). Vertically aligned nanosheets-array-like BiOI homojunction: three-in-one promoting photocatalytic oxidation and reduction abilities. ACS Sustainable Chemistry & Engineering, 5(6), 5253-5264.
[69] Fabian, D. M., & Ardo, S. (2016). Hybrid organic–inorganic solar cells based on bismuth iodide and 1, 6-hexanediammonium dication. Journal of Materials Chemistry A, 4(18), 6837-6841.
[70] 黃怡婷. (2015). 釩離子穩定δ相氧化鉍奈米粉末常溫合成法及其導電及光催化性質. 成大資源工程學系,碩士論文, 1-91.
[71] Liu, G., Li, S., Lu, Y., Zhang, J., Feng, Z., & Li, C. (2016). Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by α-Bi2O3→ γ-Bi2O3→ α-Bi2O3 transformation in a facile precipitation method. Journal of Alloys and Compounds, 689, 787-799.
[72] Zhou, G., Huang, Y., Wei, D., Bi, S., & Seo, H. J. (2019). Preparation and optical properties of Te4+/V5+-stabilized δ-Bi2O3 for visible light-driven photocatalyst. Materials & Design, 181, 108066.
[73] Wu, Y. C., Huang, Y. T., & Yang, H. Y. (2016). Crystallization mechanism and photocatalytic performance of vanadium-modified bismuth oxide through precipitation processes at room temperature. CrystEngComm, 18(36), 6881-6888.
[74] Zhou, L., Wang, W., Xu, H., Sun, S., & Shang, M. (2009). Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. Chemistry–A European Journal, 15(7), 1776-1782.
[75] Demeter, M., Neumann, M., & Reichelt, W. (2000). Mixed-valence vanadium oxides studied by XPS. Surface Science, 454, 41-44.
[76] Hao, W., Gao, Y., Jing, X., Zou, W., Chen, Y., & Wang, T. (2014). Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphologies. Journal of Materials Science & Technology, 30(2), 192-196.
[77] Zhu, S., Liang, S., Gu, Q., Xie, L., Wang, J., Ding, Z., & Liu, P. (2012). Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity. Applied Catalysis B: Environmental, 119, 146-155.
[78] Ji, Z., Wu, J., Jia, T., Peng, C., Xiao, Y., Liu, Z., ... & Hao, L. (2021). In-situ growth of TiO2 phase junction nanorods with Ti3+ and oxygen vacancies to enhance photocatalytic activity. Materials Research Bulletin, 140, 111291.
[79] Zhang, Q., Zhao, X., Duan, L., Shen, H., & Liu, R. (2020). Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 392, 112156.
[80] Pan, J., Dong, Z., Wang, B., Jiang, Z., Zhao, C., Wang, J., ... & Li, C. (2019). The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Applied Catalysis B: Environmental, 242, 92-99.
[81] Devi, L. G., Murthy, B. N., & Kumar, S. G. (2010). Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: Influence of crystallite size and dopant electronic configuration on photocatalytic activity. Materials Science and Engineering: B, 166(1), 1-6.
[82] Ren, F., Li, H., Wang, Y., & Yang, J. (2015). Enhanced photocatalytic oxidation of propylene over V-doped TiO2 photocatalyst: Reaction mechanism between V5+ and single-electron-trapped oxygen vacancy. Applied Catalysis B: Environmental, 176, 160-172.
[83] Liu, S., Yin, K., Ren, W., Cheng, B., & Yu, J. (2012). Tandem photocatalytic oxidation of Rhodamine B over surface fluorinated bismuth vanadate crystals. Journal of Materials Chemistry, 22(34), 17759-17767.
[84] Hu, S., Zhu, J., Wu, L., Wang, X., Liu, P., Zhang, Y., & Li, Z. (2011). Effect of Fluorination on Photocatalytic Degradation of Rhodamine B over In (OH)ySz: Promotion or Suppression?. The Journal of Physical Chemistry C, 115(2), 460-467.
[85] Kim, J., Lee, J., & Choi, W. (2008). Synergic effect of simultaneous fluorination and platinization of TiO2 surface on anoxic photocatalytic degradation of organic compounds. Chemical communications, (6), 756-758.
[86] Kim, J., & Choi, W. (2010). Hydrogen producing water treatment through solar photocatalysis. Energy & Environmental Science, 3(8), 1042-1045.
校內:2026-09-29公開