| 研究生: |
林建宏 Lin, Jian-Hung |
|---|---|
| 論文名稱: |
紊流場中顆粒分散現象之數值研究 Numerical Study of Particle Dispersion Phenomena in Turbulent Flows |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 兩相紊流 、紊流擴散 、硬球碰撞模式 、粗糙壁面碰撞 |
| 外文關鍵詞: | particle-laden flow, Lagrangian particle tracking method, two-phase flow, particle dispersion, inter-particle collisions |
| 相關次數: | 點閱:196 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具顆粒負載之兩相紊流為工業應用或者自然現象上常見的物理機制,由於同時具有可視為連續體之負載流場與分散之固態顆粒紊流擾動本性,因此使得其物理問題更為複雜,這也使得實際在模擬計算上有其困難存在,尤其是在於顆粒交互作用不可忽略的狀態之下。在於本研究中採用Eulerian-Lagrangian架構,且在於顆粒模擬方面,使用Lagrangian顆粒追蹤法搭配決定論法之雙體碰撞硬球模式(binary collision hard-sphere models)來進行具考量顆粒碰撞行為之顆粒運動追蹤,而於流體方面流場之紊流效應使用雷諾平均納威爾-史托克(Reynolds-Averaged Navier-Stokes, RANS)法之紊流模式加以考量,並且以顆粒源項法(particles source in cell, PSI-cell)考量負載顆粒對於流場所造成之影響。
由於要考量顆粒之交互影響效應,因此在於演算法沒有特別處理的狀況之下其計算量將會隨著顆粒數量呈現平方成長,也因如此使得要考量顆粒之交互影響效應之顆粒負載流場,往往使數值模擬的實作僅能侷限於少量之顆粒數量以內。本研究針對顆粒搜索之問題提出一種高效率具有區域搜索特性之顆粒碰撞搜索演算法,並且深入探討在於不同的輔助搜索格點 的輔助參照之下對於顆粒模擬之計算效率之影響。而結果也呈於 座落於 到 之間有著最佳的計算效率。在於此方法之下也使得決定論法用於大量顆粒且使用硬球模式考量顆粒相互碰撞效應的兩相流模擬更可得以實作。本研究中的第二部分為使用決定論法直接追蹤模擬所有顆粒來進行兩種類不同流場型態的顆粒負載流場,分別為完全發展之垂直渠道流場與背向階梯流。除了驗證PSI-cell方法在於顆粒造成之紊流調劑效應外,本研究中也針對紊流擴散效應、粗糙壁面碰撞、顆粒相互碰撞效應以及入口初始條件對於顆粒運動行為分別進行探討。研究中也發顆粒碰撞效應與粗糙壁面的碰撞對於垂直渠道流場中對於顆粒分散現象之影響十分顯著,尤其在於相對大尺寸之顆粒。研究結果指出在於顆粒反應時間與顆粒平均碰撞時間的比值 的條件下,顆粒碰撞效應就會成不可忽略的主導效應之一。而於模擬結果中也指出壁面粗糙度條件確實對於顆粒運動行為有著明顯的影響,因此壁面粗糙度以及粗糙壁面碰撞效應也是顆粒負載流場模擬中需要考量的重點。在於背向階梯流場的模擬當中也發現顆粒的入口條件的考量也會對於 的模擬結果有著顯著的影響。而研究中也證實在於顆粒之 的條件之下,顆粒會受到入口的慣性之影響而難以捲入角落迴流區。
Particle-laden flows widely appear in many engineering practices and physical phenomena. Since both dispersed phase and carrier fluid have their own statistical natures of turbulence, numerical simulations of particle-laden flows are very difficult to reliably and accurately predict. An Eulerian-Lagrangian approach in which the carrier-fluid flow field is solved with a low-Reynolds-number turbulence model while the deterministic Lagrangian method together with binary-collision hard- sphere model is applied for the solution of particle motion. Effects of inter-particle collisions and particle-wall collisions under different extents of wall roughness on particle dispersion are addressed in this thesis.
In the first part of this study, a cost-effective searching collision pairs among particles algorithm which can be suitable for unstructured meshes system and easy to parallelize is developed. The results show that the values of in the calculations using the range from to can provide a higher computational efficiency in the Lagrangian particles tracking algorithm. A quantitative parametric study of the physical mechanisms and conditions which might affect the particles’ dispersion, including the turbulence dispersion, inter-particle collisions, rough-wall effects on the particle-wall collisions, and particles’ inlet conditions are also discussed. The results show that the inter-particle collisions can not be ignored under the conditions of . The influence of wall roughness on particle-wall collisions should also be able taken into account, particularly for large particles. The simulation results also found that only particles with Stokes numbers less than unity can be dispersed into the corner recirculation region in the backward-facing step flow.
Abe, K., Kondoh, T. and Nagano, Y., 1994, “A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows – I. Flow field calculations”, International Journal of Heat and Mass Transfer, 37, 138-151.
Allenm, M. P., and Tldesly, D. J., 1986, Computer Simulation of Liquids, Oxford Scence Publication.
Apte, S. V., Mahesh, K., Moin, P. and Oefelein, J. C., 2003, “Large – eddy simulation of swirling particle – laden flows in a coaxial – jet combustor”, International Journal of Multiphase Flow, 29, 1311-1331.
Balachandar, S. and Eaton, J. K., 2010, “Turbulent dispersed multiphase flow”, Annual Review of Fluid Mechanics, 42, 111-133.
Benavides, A. and Wachem, B., 2008, “Numerical simulation and validation of dilute turbulent gas – particle flow with inelastic collisions and turbulence modulation”, Powder Technology, 182, 294-306.
Benavides, A. and Wachem, B., 2009, “Eulerian – Eulerian prediction of dilute turbulent gas-particle flow in a backward-facing step”, International Journal of Heat and Fluid Flow, 30, 452-461.
Bini, M. and Jones, W. P., 2008, “Large – eddy simulation of particle – laden turbulent flows”, Journal of Fluid Mechanics, 614, 207-252.
Bolio, E. J. and Sinclair, J. J., 1995, “Gas turbulence modulation in the pneumatic conveying of massive particle in vertical tubes”, International Journal of Multiphase Flow, 21, 985-1001.
Boivin, M., Simonin, O. and Squires, K. D., 1998, “Direct numerical simulation of turbulence modulation by particle in isotropic turbulence”, Journal of Fluid Mechanics, 375, 235-263.
Chien, K. Y., 1982, “Predictions of channel and boundary layer flows with a low – Reynolds – number turbulence model”, AIAA Journal, 20, 33-38.
Chen, C. P. and Wood, P. E., 1985, “A turbulence closure model for dilute gas – particle flow”, Canadian Journal of Chemical Engineering, 63, 349-360.
Chen, H. C. and Patel, V. C., 1988, “Near – wall turbulence models for complex flows including separation”, AIAA journal, 26, 641-648
Crowe, C. T., Sharma, M. P. and Stock, D. E., 1997, “The particle – source – in – cell (PSI – cell) model for gas – droplet flows”, Journal of Fluids Engineering - Transactions of the ASME, 99, 325-332.
Crowe, C. T., Sommerfeld, M. and Tsuji, Y., 1998, Multiphase Flow with Droplets and particles, CRC Press.
Crowe, C. T., 2000, “On models for turbulence modulation in fluid-particle flows”, International Journal of Multiphase Flow, 26, 719-727.
Cundall, P. A. and Strack, O. D. L., 1979, “A discrete numerical model for granular assemblies”, Géotechnique, 29, 47-65.
Daly, B. J. and Harlow, F. H. 1970, “Transport equation in turbulence”, Physics of Fluids, 13, 2634-2649.
Derjahuin B. V., Muller V. M. and Toporov, Y. P., 1975, “Effect of contact deformations on the adhesion of particles”, Journal of Colloid and Interface Science, 53, 314-325.
Du, S., Sawford B. L., Wilson J. D. and Wilson D. J., 1995, “Estimation of the Kolmogorov constant (C0) for the Lagrangian structure function, using a second – order Lagrangian model of grid turbulence”, Physics of Fluids, 7, 3083-3090
Elghobashi, S., 1994, “On predicting particle – laden turbulent flows”, Flow, Turbulence and Combustion, 52, 309-329.
Ferrante, A. and Elghobashi, S., 2003, “On the physical mechanisms of two – way coupling in particle – laden isotropic turbulence flow”, Physics of Fluids, 15, 315-329.
Fessler, J. R. and Eaton, J. K., 1999, “Turbulence modification by particles in a backward-facing step flow”, Journal of Fluid Mechanics, 394, 97-117.
Fessler, J. R., Kulick, J. D. and Eaton, J. K., 1994, “Preferential concentration of particles in a turbulent channel flow”, Physics of Fluids, 6, 3742-3749.
Fukada, T., Takeuchi, S. and Kajishima, T., 2014, “Effects of curvature and vorticity in rotating flows on hydrodynamic forces acting on a sphere”, International Journal of Multiphase Flow, 58, 292-300.
Gibson, M. M. and Launder, B. E., 1978, “Ground effects on pressure fluctuations in the atmospheric boundary layer”, Journal of Fluid Mechanics, 86, 491-511.
Gopalakrishnan, P. and Tafti, D., 2013, “Development of parallel DEM for the open source code MFIX”, Powder Technology, 235, 33-41.
Hardalupas, Y., Taylor, A. M. K. P. and Whitelaw, J. H., 1992, “Particles dispersion in vertical round sudden expansion flow”, Proceedings of the Royal Society of London A, 341, 411-422.
Hertz, H, 1896, “Über die berührung fester elastischer Körper”, Miscellaneous Paper, Principles of Mechanics, in Miscellaneous Papers, Macmillan, 156-171.
Hetsroni, G., 1989, “Particles-turbulence interaction,” International Journal of Multiphase Flow, 15, 735-746.
Hishida, K. and Maeda, M., 1991, “Turbulence characteristics of particle-laden flow behind a reward facing step”. (FED, Vol. 121, ASME), 207-212.
Hsieh, W. D. and Chang, K. C., 1995, “Calculation of wall heat transfer in pipe expansion turbulence turbulent flows”, International Journal of Heat and Mass Transfer, 39, 3813-3822.
Johnson, K. L., Kendall, K. and Roberts, 1971, “A. D., Surface energy and the contact of elastic solids”, Proceedings of the Royal Society of London. Series A, 324, 301-313.
Kajishima, T., Takiguchi, S., Hamasaki, H. and Miyake, Y., 2001, “Turbulence structure of particle – laden flow in a vertical plane channel due to vortex shedding”, JSME International Journal Series B Fluids and Thermal Engineering, 44, 526-535.
Kobayashi, T., Tanaka, T., Shimada, N. and Kawaguchi, T., 2013, “DEM – CFD analysis of fluidization behavior of Gelldart Group A particles using a dynamic adhesion force model”, Powder Technology, 248, 143-152.
Kondaraju, S., Choi, M., Xu, X. and Lee, J. S., 2012, “Direct numerical simulation of modulation of isotropic turbulence by poly – dispersed particles”, International Journal for Numerical Methods in Fluids, 69, 1237-1248.
Komossa, H., Wirtz, S., Scherer, V., Herz, F. and Specht, E., 2014, “Transversal bed motion in rotating drums using spherical particles: comparison of experiments with DEM simulations”, Powder Technology, 264, 96-104.
Kruggel-Emden, H., Sturm, M., Wirtz, S. and Scherer, V., 2008, “Selection of an appropriate time integration scheme for the discrete element method (DEM)”, Computers & Chemical Engineering, 32, 2263-2279.
Kuerten, J. G. M., 2006, “Subgrid modeling in particle – laden channel flow”, Physics of Fluids, 18, 025108.1-13.
Kulick, J. D., Fessler, J. R. and Eaton, J. K., 1994, “Particle response and turbulence modification in fully developed channel flow”, Journal of Fluid Mechanics, 277, 109-134.
Kussin, J. and Sommerfeld, M., 2002, “Experimental studies on particle behavior and turbulence modification in horizontal channel flow with different wall roughness”, Experiments in Fluids, 33, 143-159.
Lain, S. and Garcia, J. A., 2006, “Study of four – way coupling on turbulent particle – laden jet flows”, Chemical Engineering Science, 61, 6775-6785.
Lain, S., Sommerfeld, M. and Kussin, J., 2002, “Experimental studies and modeling of four-way coupling in particle – laden horizontal channel flow”, International Journal of Heat and Fluid Flow, 23, 647-656.
Launder, B. E. and Shima, N., 1989, “Second – moment closure for the near – wall sublayer: development and application”, AIAA journal, 27, 1319-1325.
Lien, F. S. and Leschziner, M. A., 1994, “Assessment of turbulent transport models including non – linear RNG eddy – viscosity formulation and second – moment closure”, Computers & Fluids, 23, 983-1004.
Lightstone, M. F. and Hodgson, S. M., 2004, “Turbulence modulation in gas – particle flows: a comparison of selected models”, Canadian Journal of Chemical Engineering, 82, 209-219
Luo, K., Wei, A., Wang, Z. and Fan, J., 2013, “Fully – resolved DNS study of rotation behaviors of one and two particles settling near a vertical wall”, Powder Technology, 245, 115-125.
Mando, M., Lightstone, M. F., Rosendahl, L., Yin, C. and Sorensen, H., 2009, “Turbulence modulation in dilute particle – laden flow”, International Journal of Heat and Fluid Flow, 30, 331-338.
Maxey, M. R. and Riley, J. J. 1983, “Equation of motion for a small rigid sphere in a non-uniform flow”, Physics of Fluids, 26, 883-899.
Meyer, D. W., 2012, “Modeling of turbulence modulation in particle – or droplet – laden flows”, Journal of Fluid Mechanics, 706, 251-273.
Mito Y. and Hanratty, T. J., 2002, “Use of a modified Langevin equation to describe turbulent dispersion of fluid particles in a channel flow”, Flow, Turbulence and Combustion, 68, 1-26.
Molin, D., Marchioli, C. and Soldati, A., 2012, “Turbulence modulation and microbubble dynamics in vertical channel flow”, International Journal of Multiphase Flow, 42, 80-95.
Mostafa, A. A. and Mongia, H. C., 1988, “On the interaction of particles and turbulent fluid flow”, International Journal of Heat and Mass Transfer, 31, 2063-2075.
Nagano, Y. and Tagawa, M., 1990, “An improved model for boundary layer flows”, Journal of Fluids Engineering, 112, 33-39.
Pan, Y., Tanaka, T. and Tsuji, Y., 2001, “Direct numerical simulation of particle – laden rotating turbulent channel flow”, Physics of Fluids, 13, 2320-2337.
Pandya, R. V. R. and Mashayek, F., 2002, “Two-fluid large-eddy simulation approach for particle-laden turbulent flows”, International Journal of Heat and Mass Transfer, 45, 4753-4759.
Pantaka S. V., 1980, Numerical Heat Transfer and Fluid Flow, CRC Press.
Sawford, B. L., 1991, “Reynolds number effect in Lagrangian stochastic models of turbulent dispersion”, Physics of Fluids A: Fluid Dynamics, 3, 1577-1586.
Sommerfeld, M., 1992, “Modelling of particle – wall collisions in confined gas – particle flows”, International Journal of Multiphase Flow, 18, 905-926.
Sommerfeld, M., 1999, “Experimental analysis and modelling of particle – wall collisions”, International Journal of Multiphase Flow, 25, 1457-1489.
Sommerfeld, M., 2001, “Validation of a stochastic Lagrangian modeling approach for inter-particle collision in homogeneous isotropic turbulence”, International Journal of Multiphase Flow, 27, 1829-1858
Spalart, P. R., 2009, “Detached – eddy simulation”, Annual Review of Fluid Mechanics, 41, 181-202.
Spalart, P. R., Jou, W. H., Strelets, M. and Allmaras, S. R., 1997, “Comments on the feasibility of LES for wings, and on a hybrid RANS / LES approach”, Advances in DNS/LES, 1st AFOSR Int. Conf. On DNS/LES, Greyden Press, Columbus, OH,Aug 4-8, 1997.
Tanaka, T. and Tsuji, M., 1991, Numerical simulation of gas – solid two – phase in a vertical pipe: on the effect of inter – particle collision, in gas – solid phase, (FED, Vol. 121, ASME), 123-128.
Thompson, M. C., Leweke, T. and Hourigan, K., 2007, “Sphere – wall collisions: vortex dynamics and stability”, Journal of Fluid Mechanics, 575, 121-148.
Tsuji, Y., 2000, “Activities in discrete particle simulation in Japan,” Powder Technology, 113, 278-286.
Tu, J. Y. and Fletcher, C. A. J., 1994, “An improved model for particulate turbulence modulation in confined two – phase flows”, International Communications in Heat and Mass, 21, 775-783.
Vreman, A. W., 2007, “Turbulence characteristic of particle – laden pipe flow”, Journal of Fluid Mechanics, 584, 235-279.
Wolfshtein, M., 1969, “The velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient”, International Journal of Heat and Mass Transfer, 12, 301-318.
Yan, F., Lightstone, M. F. and Wood, P. E., 2007, “Numerical study on turbulence modulation in gas – particles flow”, Heat Mass Transfer, 43, 243-253.
Yu, K. F., Lau, K. S. and Chan, C. K., 2004, “Numerical simulation of gas – particle flow in a single – side backward – facing step flow”, Journal of Computational and Applied Mathematics. 163, 319-331.