簡易檢索 / 詳目顯示

研究生: 洪鈴雅
Ya, Ling
論文名稱: 奈米二氧化鈦粒子嵌入中孔洞氧化矽材之合成與分析及性質之探討
Synthesis , analysis and characterization of nano titania particles-coated mesoporous silica
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 光觸媒溶膠凝膠二氧化鈦中孔洞氧化矽奈米
外文關鍵詞: sol-gel, nano, mesoporous silica, titania, photocatalyst
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用非離子型界面活性劑(nonionic surfactant)在水中形成有機模板,並以矽酸鈉做為SiO2前驅物的來源合成具有高比表面積(~600m2/g)的SBA-15作為TiO2擔體以達到分散及縮小TiO2粒子進而提高TiO2光催化活性之目的。而為了降低二氧化鈦前驅物TTIP(Titanium isopropoxide)水解之速率,本實驗利用醋酸做為鉗合劑(chelating agent)使其與TTIP形成螯合物(chelate)以降低TTIP水解之速率。實驗結果藉由XRD、FTIR、TEM、UV-Vis等儀器來分析TiO2/SBA-15複合材料的特性。

      由TEM結果顯示,本實驗使用有機溶劑模板法製備TiO2/SBA-15可將TiO2嵌入於SBA-15孔道結構中,並有效地分散且抑制TiO2晶粒成長至5 nm以下,這使得TiO2於UV-Vis測試中具有藍移現象,對於此現象藉由FTIR證實,這是由於Si-O-Si與Ti-O-Ti各自斷鍵且形成新的Si-O-Ti鍵結所導致。另外,利用XRD可發現SBA-15具有抑制anatase相轉變為rutile相的功能,代表SBA-15孔洞材料具有穩定anantase相的作用。而藉由氮氣吸附/脫附曲線及SAXS結果顯示,嵌入於孔洞結構中的TiO2對於SBA-15孔道結構不會產生破壞與坍塌。最後經由分降解甲基藍溶液之光觸媒活性測試結果可知,相較於純TiO2奈米粒子,TiO2/SBA-15材料降解甲基藍之效率可提升3倍左右,同時,對於乾燥狀態下的甲基藍粉末亦有降解之作用。

    In this research, nonionic surfactant was used as liquid template and Na2SiO4 as SiO2 precursor to synthesis mesoporous silica SBA-15 with high specific surface area. The synthesized SBA-15 has surface area of 600 m2/g which could be served as the TiO2 supporter to reduce the TiO2 grain size and well-dispersed TiO2 for enhancing photocatalytic activity. In order to slow down the hydrolysis rate of TTIP(Titanium tetraisopropoxide) that used as precursor of TiO2, acetic acid was applied as a chelating agent to chelate with TTIP. The synthesized Titania/Silica composites were characterized by X-ray diffraction, FTIR, TEM, UV-Visible spectroscopy , etc.

    TEM micrographs showed that the organic solute template method could prepare the titania-silica composite, and successfully embedded titaina in SBA-15 channel. The mesoporous structure restrained the titania grain size within 5 nm which caused blue shift identified by UV-Vis spectra. This is due to the formation of Si-O-Ti bonding which was identified by FTIR. The dispersion effect promoted by the support prevents in all cases the anatase to rutile phase transformation observed in monolithic TiO2 materials upon identical calcination temperature. The order of the support framework still maintained upon loading different TiO2 content confirm by N2 adsorption/desorption and SAXS. The synthesized samples have shown their activity as photocatalysts for not only Methylene Blue(MB) solution but also MB dry powder.

    中文摘要................................................................................................I 英文摘要................................................................................................II 誌謝........................................................................................................III 總目錄....................................................................................................V 圖目錄...................................................................................................VIII 表目錄....................................................................................................XI 第一章 緒論..........................................................................................1 1.1前言..............................................................................................1 1.2 研究目的與動機.........................................................................2 第二章 理論基礎與文獻回顧..............................................................4 2.1中孔材料之簡介..........................................................................4 2.1.1 中孔材料的發展.................................................................4 2.1.2中孔洞材料MCM-41簡介................................................6 2.1.3中孔洞材料SBA-15.............................................................6 2.1.4 中孔洞分子篩的主要研究範疇........................................8 2.1.5 中孔洞分子篩的性質與應用................................13 2.1.6 中孔洞分子篩表面修飾....................................................14 2.2 奈米半導體的應用....................................................................16 2.3 光觸媒反應原理........................................................................20 2.4 溶膠凝膠法................................................................................20 2.4.1 溶膠凝膠法之原理概述...................................................21 2.4.2 溶膠凝膠法之製備技術...................................................22 第三章 實驗方法與步驟.....................................................................24 3.1實驗藥品.....................................................................................24 3.2實驗步驟......................................................................................24 3.2.1 實驗流程............................................................................24 3.2.2溶液的調配.........................................................................25 3.2.3 熱處理條件........................................................................26 3.3 儀器鑑定分析.............................................................................28 3.3.1.X-射線粉末繞射光譜儀.....................................................29 3.3.2 穿透式電子顯微鏡.............................................................29 3.3.3.掃描式電子顯微鏡..............................................................29 3.3.4氮氣等溫吸附/脫附測量....................................................30 3.3.5 氮氣等溫吸/脫附曲線之類型...........................................33 3.3.6 反射式紫外光光譜.............................................................34 3.3.7 化學鍵結分析.....................................................................36 3.3.8 光觸媒活性測試.................................................................36 第四章 結果與討論.............................................................................39 4.1 中孔洞氧化矽之合成與分析.......................................................39 4.1.1 表面型態與微結構之鑑定..................................................39 4.1.2 孔洞性質之分析..................................................................43 4.2 TiO2 之晶相鑑定與分析...............................................................45 4.3 TiO2含量對於TiO2/SBA-15複合材料性質的影響....................48 4.3.1 微結構觀察..........................................................................48 4.3.2 結晶型態分析......................................................................52 4.3.3 奈米TiO2粒子的相變.........................................................55 4.3.4 TiO2/SBA-15複合材料之性質量測..................................60 4.4 TiO2對於孔道微結構之影響.........................................................68 4.4.1孔道微結構觀察..................................................................68 4.5光觸媒活性量測.............................................................................79 第五章 結論.......................................................................................84 參考文獻...............................................................................................85 作者簡介...............................................................................................91

    1. 李曉平,徐寶琨,劉國範等。功能材料。30, 242~245, 1999.
    2. 陶耀武,趙夢月,陳士夫等。環境科學。17, 33~35, 1996.
    3. Okamoto K-I, Yamato Y, Tanaka H, et al. Chem. Soc. Jpn. 58, 2015
    ~2022, 1985.
    4. S. Bhatia, Zeolite catalysis principles and application , CRC press,
    Florida, 1990.
    5. B. Imelik, Y. Naccahe, J. Bentaaiit , J. C. Vedrine , G. Coudurier, H.
    Praliaud, Catalysis by zeolite, Elesevier, Amstordam, 1980.
    6. C. T. Kresge, M. E. Leonowice,W. J. Roth, J. C. Vartuli, J. S. Beck,
    Nature, 359, 710, 1992.
    7. J. S. Beck, J. C.Vartuli,W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.
    D. Schmitt, C. T. Chu, D. H. Oslon, E. W. Sheppard, S.B. Higgins, J. L.
    Schlenker, J.Am.Chem.Soc.114, 10834, 1992..
    8. C. F. Cheng, Z . Luan, J. Klinowski, Langmuir, 11, 2815, 1995.
    9. J. S. Beck, J. C. Vartuli, G. J. Kemedy, C. T. Kresge,W. J. Roth, S. E.
    Schamm, Chem.Mater.6, 1816, 1994.
    10. Mc Bain, J.W., The sorption of Gas and Vapours by Solids,
    Rutledge and Sons, London, ch.5, 1932.
    11. Bhatia, J., Zeolit catalysis principles and application, CRC press,
    Florida, 1990.
    12. B. Imelik, Y. J. Nacccache, J. Bentaaiit, C. Vedrine, G. Coundurier, H.
    Praliaud, Catalysis by zeolite, Elesevier, Amstordam.
    13. W. J.Ward, Molecular sieve catalysis, in applied industrial catalysis ,
    Academic press, New York, vol.3, 1984
    14. IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt.1, Collid
    and Surface Chemistry, Pure Appl.Chem., 31, 578, 1972.
    15. Burkett. S. L.; Li, H. X.; Davis, M. E. Microporous Mater.2, 27,
    1993.
    16. C. F. Cheng, Z. Luan, J. Klinowski, Langmuir, 11, 2815, 1995.
    17. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F.
    Chemlka , G. D. Stucky, Science, 279, 548, 1998.
    18. W. Wang, S. Xie,W. Zhou, A. Sayari, Chem. Mater. 15, 2815, 2003.
    19. J. Fan, C. Yu, F. Gao, J. Lei, B.Yian L.Wang, Q. Luo, B. Tu, Zhou
    and D. Zhao. Angew. Chem. 115, 3254, 2003.
    20. Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melish,
    Glenn H.Fredrickson, Bradley F .Chmelka, and Galen D. Stucky,
    Science 279, 548, 1998.
    21. Yonggang Yang , Masahiro Suzuki, Hirofusa Shirai, Akio Kurose and
    Kenji Hanabusa, Chem.Commun.2032, 2005.
    22. V. Alfredsson and M. W. Anderson.Chem.Mater. 8, 1141, 1996.
    23. H. P. Lin and C. Y. Mou Acc. Chem.Rev.35, 927, 2002.
    24. Q. Huo, D. I. Margolese and G. D. Stucky, Chem. Mater.8.1147,1996.
    25. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J.
    C. Hanson and A. Monnier.Chem.Mater. 13, 2247, 2001.
    26. J. M. Kim, Y . Sakamoto, Y. K. Hwang, Y.-Uk Kwon, O. Terasaki, S.
    Eon. Park and G. D. Stucky.J. Phys. Chem.B.106, 2552, 2002.
    27. Z. Zhang, Y. Han, Feng-Shou Xiao, S. Qiu, L. Zhu,R.Wang,Y. Yu, Ze
    Zhang, B. Zou, Y.Wang , H. Sun,D. Zhao and Y.Wei . J. Am. Chem.
    Soc. 123, 691, 2001.
    28. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc.123, 691, 2001.
    29. Y. Han, S. Wu, Y. Sun, D. Li and Feng-Shou Xiao. Chem. Mater. 14,
    1144, 2002
    30. Z. Zhang, Y. Han, L. Zhu, R.Wang , Y. Yu, S. Qiu, D. Zhao and
    Feng –Shou Xiao.Angew.Chem.Int.Ed.7, 1258, 2001.
    31. Y. Han, Feng-Shou Xiao, S.Wu, Y. Sun , X. Meng, D. Li and S. Lin. J.
    Phys. Chem.B.105, 7963, 2001.
    32. D. Margolese, J. A, Melero,C. Christiansen, B. F. Chemelka and G.D.
    Stukey. Chem. Mater. 12, 2448, 2002.
    33. A.Walcaricus,M. Etienne and B. Lebeau. Chem. Mater. 15, 2161,
    2003.
    34. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem.14, 951, 2004.
    35. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature, 48,
    289, 2000.
    36. E. B. Erlein. Angew. Chem. Int. Ed.42, 614, 2003.
    37. M. Hartmann, A. Poppl, L. Kevan, J. Phys. Chem. 99, 17494, 1995.
    38. Hartmann, M.; Poppl, A. ; Kevan, J. Phys. Chem. 1996, 100, 9906. 24
    39. Z. Luan, J. Xu, L. Kevan, Nukleonika, 42, 493, 1997.
    40. A. Poppl, M. Hartmann, L. Kevan, J. Phys. Chem.99, 17251, 1995.
    41. A. Poppl, L. Kevan, Langmuir, 11, 4486, 1995.
    42. A. Poppl, M. Hartmann, L. Kevan, Appl. Magn. Reson, 10, 491,
    1996.
    43. J. M. Kim, J. H. Kwak, S. Jun. Ryoo, J. Phys. Chem.99, 16742, 1995.
    44. K. R. Kleotstra, H. VanBekkum, J. Chem. Soc. Chem. Coummun.
    1005, 1995.
    45. M.Yonemitsu, Y. Tanaka, M. Iwamoto, Chem. Mater.9, 2679, 1997.
    46. B. J. Aronson, C. F. Blanford, A. Stein, Chem. Mater.9. 2842, 1997.
    47. Y. Xu, C. H. Langford, J. Phys. Chem. B 101, 3115, 1997.
    48. J. V.Walker, M. Morey, H.Carlsson, A. Davidson, G. D. Stucky. A.
    Butler, J. Am. Chem. Soc. 119, 6921, 1997.
    49. Z. Luan, L. Kevan, J. Phys. Chem.B 101, 2020, 1997.
    50. Z. Luan, P. A. Meloni, R. S. Czernuszewicz, L. Kevan, J. Phys.
    Chem.B. 101, 9046, 1997.
    51. R. Burch, N. Cruise, D. Gleeson, S.C.Tsang, Chem. Commun. 951.
    1996.
    52. S. Ayyappan, N. Ulagappan, Proc.-Indian Acad. Sci., Chem. Sci. 108.
    505, 1996.
    53. C. Song , K. M. Reddy, Prepr -Am. Chem. Soc., Div. Pet. Chem. 41,
    567, 1996.
    54. Y. Yue, Y. Sun, Z. Gao, Catal. Lett.47, 167, 1997.
    55. R. Ryoo, C. H. Ko, J. M. Kim, R. Howe, Catal.Lett. 37, 29, 1996.
    56. C. H. Ko, R. Ryoo, Chem. Commun. 2467, 1996.
    57. R. Ryoo, J. M. Kim, C. H. Ko, C. H. Shin, J.Phys. Chem. 100, 17718,
    1996.
    58. A.Corma, A. Martinez, V. J. Martinez-Soria, Catal. 169,480,1997.
    59. U. Junges, F. Schuth, G. Schmid, Y. Uchida, R. Schlogl, Ber
    Bunsen-Ges. Phys. Chem. 101, 1631, 1997.
    60. C. A. Koh, R. Nooney, S. Tahir, Catal.Lett.47, 199, 1997.
    61. K. M. Reddy, C. Song, Prepr. Pap.-Am. Chem. Soc., Div. Fuel
    Chem. 41, 906, 1996.
    62. A. Jentys, N. H. Pham, H. Vinek, M. Englisch, J. A. Lercher,
    Micropoous Mater.6, 13, 1996.
    63. D. S. Shephard, T. Maschmeyer, B. F. G. Johnson, J. M. Thomas, G .
    Sankar, D.Ozkaya, W.Zhou, R.D.Oldroyd,W.Zhou, R.D. Oldroyd,
    R.G.Bell, Angew. Chem. Int. Ed. Engl.36, 2242, 1997.
    64. C. T. Fishel, R. J. Davis, J. M. Garces, J. Catal. 163, 148, 1996.
    65. R. Leon, D. Margolese, G. Stucky, P. M. Petroff, Phys. Rev. B:
    Condens. Matter 52, 2285, 1995.
    66. S. G. Romanov, N. P. Johnson, C. M. S. Torres, H. M. Yates, J. Agger,
    M. E. Pemble , M. W. Anderson, A.R. Peaker, V. Butko, Proc.
    Electrochem. Soc. 95-17, 14, 1996.
    67. W. Bohlmann, K. Schandert, A. Poppl, H. Semmelhack, Zeolites 19,
    297, 1997.
    68. L. Frunza, H. Kosslick, H. Landmesser, E. Hoft, R. Fricke, J. Mol.
    Catal. A : Chem.123, 179, 1997.
    69. I. Honma, H. Sasabe, H. S. Zhau. Mater. Res. Soc. Symp. Proc. 457,
    525, 1997.
    70. R. Hoppe, A.Ortlam, J. Rathousky, G. Schulz-Elkoff, A. Zukal,
    Microporous Mater. 8, 267, 1997.
    71. Frank S N,Bard A J. J. Phys. Chem. 81, 1484~1486, 1997
    72. Frank S N,Bard A J.J.Phys.Chem.91, 5076~5083, 1987.
    73. Fujishima A, Honda K. Nature, 238, 37~38, 1972.
    74.高濂,鄭珊,張青紅著奈米光觸媒五南出版社
    75. Augustynski, Electrochem. Acta, Vol.38, pp.43., 1993
    76. 1 (A.Wold ,Chem.Mater.,5, 280), 1993.
    77. R. W. Matthews, J. Phys. Chem., 91, 3328, 1987
    78. R. W. Matthews , J. Catal., 111, 264, 1988
    83. K. Okamot, Y. Yamoto, H. Tanaka and A . Itaya, Bull . Chem. Soc .
    Japan , 58,2015, 1985.
    80. J. Sabate, M. A. Anderson , H. Kikkawa, M. Edwards and C. G.Hill,
    Jr., J. Catal., 127,167, 1991.
    81. K. S. W. Sing (UK, Chairman); D. H. Everett(UK); R. A.W. Haul
    (FRG); L. Koscou (Netherlands); R. A. Pierotti(USA); J. Rouque’rol
    (France); T. Siemieniewska (Poland). Appl. Chem., Vol. 57, No. 4, pp.
    603-619, 1985.
    82. Kiyoshi Okada, Nobuo Yamamoto, Yoshikazu Kameshima, and Astuo
    Yasumori. J. Am. Cera. Soc. 84 1591-96, 2001.
    83. Yuanzhi Li, and Sun-Jae Kim. J. Phys. Chem. B 109, 12309 –12315,
    2005.
    84. Zhang H and Banfield J F. J. Mater. Chem. 8, 2073~2076, 1998.
    85. Z. L. Hua, L. L. Shi, L. X. Zhang, M. L. Ruan, J. N. Yan, Adv. Mater.
    14 , 830, 2002.
    86. A. Henlein . Chem. Rev. 89, 1861~1873, 1989.
    87. R. J. Davis, Z. Liu, Chem. Mater. 9, 2311~2324, 1997.
    88. Guidotti, M.; Rzvasio, N.; Psaro, R.; Ferraris, G.; Moretti, G. J. Catal.
    214, 245-250, 2003.
    89. Murata, C.; Yoshida, H.; Kumagai, J.; Hattori, T. J . Phys. Chem. B.
    2003, 107, 4364.
    90. Hong, S. S.; Lee, M.S.; Park, S. S ; Lee, G. D. Catal. Today 2003, 87,
    99.

    下載圖示 校內:2009-07-27公開
    校外:2009-07-27公開
    QR CODE