| 研究生: |
顏育淳 Yan, Yu-Chun |
|---|---|
| 論文名稱: |
新非線性光學材料金屬硫化物之合成與鑑定 Synthesis and Characterization of New Nonlinear Optical Material of Metal Chalcogenide |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 非線性光學材料 、硫族化合物 、寬能隙 |
| 外文關鍵詞: | Non-linear materials, Metal chalcogenide, Wide band gap |
| 相關次數: | 點閱:43 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用固態熔融反應搭配助熔長晶法,成功地合成出新穎硫族化合物K1.51(8)Zn0.74(8)In4.60(6)S8.00 (1),其空間群及晶系為Trigonal R3,單位晶格軸長分別為a = 3.8442(7) Å, b = 3.8442(7) Å, c = 62.300(11) Å。此層狀化合物之結構是由InS6八面體與MS4 (M = Zn、In)四面體以共用角的形式形成兩種不同的厚層,層和層之間再以陽離子K+ 填充在骨架孔道當中維持電荷平衡。
此化合物之純相合成是藉由單晶數據所得之理論分子式比例做調整,經由高溫800°C反應確保起始物完全熔融,接著在600°C進行退火(annealing)程序,產物為黃色六角形薄片狀晶體。在顯微鏡下挑選定量晶體並以差示熱分析儀鑑定,發現此化合物具有良好之熱穩定性,沒有裂解行為產生。透過紫外光-可見光-近紅外光吸收光譜儀並利用Kubelka-Munk equation計算出此化合物能隙為2.45 eV,和商業常見之非線性光學材料AgGaS2 (band gap = 2.64 eV)相接近。期許在光學測量上擁有良好的表現,使其成為具有高利用價值的非線性光學材料。
A novel metal chalcogenide K1.51(8)Zn0.74(8)In4.6(6)S8.00 (1) with a non-centrosymmetric framework was successfully synthesized by solid state reaction using a KBr flux. The crystal crystallizes in the space group trigonal R3 with a = 3.8442(7) Å, c = 62.300(11) Å, V = 797.3(4) Å3 and Z = 3. The structure adopts a new two-dimensional structure, which linkage motifs can be divided into two distinct of layers parallel to the ab plane: one layer is formed by In(1)S6 octahedral and the M(2)S4 (M = Zn, In) tetrahedra, the other is formed by In(4)S6 octahedral and the M(3)S4 (M = Zn, In) tetrahedra. The K+ cations are distributed between the layers to keep the charge neutralization.
The major phase of compound is synthesized using the stochiometric ratio in the reaction heated at 800°C, followed by an annealing procedure at 600°C, and finally cooled to room temperature by turning off the furnace. A large amount of plate and yellow crystals were observed in the product. The crystals were collected for the measurements of thermal stability, which result showed a high melting point undetectable until 900°C. UV-visible-near-infrared absorption spectrum analyzed by the Kubelka-Munk equation shows the compound featuring energy gap of 2.45 eV, which is comparable the commercial nonlinear optical material of AgGaS2 (band gap = 2.64 eV).
(1) Li, M.-Y.; L, B.-X.; Lin, H.; Shi, Y.-F.; Ma, Z.; Wu, L.-M.; Wu, X.-T.; Zhu, Q.-L. , Inorg. Chem. 2018, 57, 8730-8734.
(2) Boyd, G. D.; Buehler, E.; Storz, F. G.; Wernick, J. H. , IEEE Journal of Quantum Electronics 1972, 8, 419-426.
(3) Byer, R. L. , IEEE J. Sel. Top. Quantum Electron 2000, 6, 911-930.
(4) Chen, C.-T.; Liu, G.-Z. , Ann. Rev. Mater. Sci. 1986, 16, 203-243.
(5) Li, Z.; Jiang, X.; Yi, C.; Zhou, M.; Guo, Y.; Luo, X.; Lin, Z.; Wu, Y.; Shi, Y.; Yao, J. , J. Mater. Chem. C. 2018, 6, 10042-10049.
(6) Lin, Y.-J.; Liu, B.-W.; Ye, R.; Jiang, X.-M.; Yang, L.-Q.; Zeng, H.-Y.; Guo, G.-C. , J. Mater. Chem. C 2019, 7, 4459-4465.
(7) Abrahams, S. C.; Bernstein, J. L. , J. Chem. Phys. 1973, 59, 1625-1629.
(8) Boyd, G. D.; Kasper, H.; McFee, J. H. , IEEE J. Quantum Electron 1971, 7, 563-573.
(9) Lai, W.-H.; Haynes, A. S.; Frazer, L.; Chang, Y.-M.; Liu, T.-K.; Lin, J.-F.; Liang, I.-C.; Sheu, H.-S.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F. , Chem. Mater. 2015, 27, 1316-1326.
(10) Li, S.-F.; Jiang, X.-M.; Liu, B.-W.; Yan, D.; Zeng, H.-Y.; Guo, G.-C. , Inorg. Chem. 2018, 57, 6783-6786.
(11) Byer, R. L.; Choy, M. M.; Herbst, R. L.; Chemla, D. S.; Feigelson, R. S. , Appl. Phys. Lett. 1974, 24, 65-68.
(12) Liang, F.; Kang, L.; Lin, Z.; Wu, Y. , Cryst. Growth 2017, 17, 2254-2289.
(13) Lin, H.; Li, B.-X.; Chen, H.; Liu, P.-F.; Wu, L.-M.; Wu, X.-T.; Zhu, Q.-L. , Inorg. Chem. Front. 2018, 5, 1458-1462.
(14) Becker, P. , Adv. Mater. 1998, 10, 979-992.
(15) Kang, L.; Ramo, D. M.; Lin, Z.; Bristowe, P. D.; Qin, J.; Chen, C. , J. Mater. Chem. C 2013, 1, 7363-7370.
(16) Li, G.; Wu, K.; Liu, Q.; Yang, Z.; Pan, S. , J. Am. Chem. Soc. 2016, 138, 7422-7428.
(17) Li, S.-F.; Jiang, X.-M.; Fan. Y.-H.; Liu, B.-W.; Zeng, H.-Y.; Guo, G.-C. , Chem. Sci. 2018, 9, 5700-5708.
(18) Shoji, I.; Kondo, T.; Kitamoto, A.; Shirane, M.; Ito, R. , J. Opt. Soc. Am. 1997, 14, 2268-2294.
(19) Halasyamani, P. S.; Poeppelmeier, K. R. , Chem. Mater. 1998, 10, 2753-2769.
(20) Jiang, J.; Mei, D.; Gong, P.; Lin, Z.; Zhong, J.; Wu, Y. , RSC Adv. 2017, 7, 38044-38051.
(21) Morris, C. D.; Li, H.; Jin, H.; Malliakas, C. D.; Peters, J. A.; Trikalitis, P. N.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G. , Chem. Mater. 2013, 25, 3344-3356.
(22) Boucher, F.; Evain, M.; Brec, R. , J. Alloys Compd. 1994, 215, 63-70.
(23) Luo, X.; Liang, F.; Zhou, M.; Guo, Y.; Li, Z.; Lin, Z.; Yao, J.; Wu, Y. , Inorg. Chem. 2018, 57, 9446-9452.
(24) Huang, F. Q.; Somers, R. C.; McFarland, A. D.; Duyne. R. P. V,; Ibers, J. A. , J. Solid State Chem. 2003, 174, 334-341.
(25) Rosario, A.-G.; Asiloe, J. M.; Dwight, R. A.-N.; Gerzon, E. D.; Santos, A. L.-R.; Andrew, N. F.; Andres, E. M.; John, W. S. , J. Appl. Cryst. 2006, 39, 1-5.
(26) Brese, N. E.; O'keeffe, M. , Acta Cryst. 1991, 47, 192-197.