簡易檢索 / 詳目顯示

研究生: 顏育淳
Yan, Yu-Chun
論文名稱: 新非線性光學材料金屬硫化物之合成與鑑定
Synthesis and Characterization of New Nonlinear Optical Material of Metal Chalcogenide
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 38
中文關鍵詞: 非線性光學材料硫族化合物寬能隙
外文關鍵詞: Non-linear materials, Metal chalcogenide, Wide band gap
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用固態熔融反應搭配助熔長晶法,成功地合成出新穎硫族化合物K1.51(8)Zn0.74(8)In4.60(6)S8.00 (1),其空間群及晶系為Trigonal R3,單位晶格軸長分別為a = 3.8442(7) Å, b = 3.8442(7) Å, c = 62.300(11) Å。此層狀化合物之結構是由InS6八面體與MS4 (M = Zn、In)四面體以共用角的形式形成兩種不同的厚層,層和層之間再以陽離子K+ 填充在骨架孔道當中維持電荷平衡。
    此化合物之純相合成是藉由單晶數據所得之理論分子式比例做調整,經由高溫800°C反應確保起始物完全熔融,接著在600°C進行退火(annealing)程序,產物為黃色六角形薄片狀晶體。在顯微鏡下挑選定量晶體並以差示熱分析儀鑑定,發現此化合物具有良好之熱穩定性,沒有裂解行為產生。透過紫外光-可見光-近紅外光吸收光譜儀並利用Kubelka-Munk equation計算出此化合物能隙為2.45 eV,和商業常見之非線性光學材料AgGaS2 (band gap = 2.64 eV)相接近。期許在光學測量上擁有良好的表現,使其成為具有高利用價值的非線性光學材料。

    A novel metal chalcogenide K1.51(8)Zn0.74(8)In4.6(6)S8.00 (1) with a non-centrosymmetric framework was successfully synthesized by solid state reaction using a KBr flux. The crystal crystallizes in the space group trigonal R3 with a = 3.8442(7) Å, c = 62.300(11) Å, V = 797.3(4) Å3 and Z = 3. The structure adopts a new two-dimensional structure, which linkage motifs can be divided into two distinct of layers parallel to the ab plane: one layer is formed by In(1)S6 octahedral and the M(2)S4 (M = Zn, In) tetrahedra, the other is formed by In(4)S6 octahedral and the M(3)S4 (M = Zn, In) tetrahedra. The K+ cations are distributed between the layers to keep the charge neutralization.
    The major phase of compound is synthesized using the stochiometric ratio in the reaction heated at 800°C, followed by an annealing procedure at 600°C, and finally cooled to room temperature by turning off the furnace. A large amount of plate and yellow crystals were observed in the product. The crystals were collected for the measurements of thermal stability, which result showed a high melting point undetectable until 900°C. UV-visible-near-infrared absorption spectrum analyzed by the Kubelka-Munk equation shows the compound featuring energy gap of 2.45 eV, which is comparable the commercial nonlinear optical material of AgGaS2 (band gap = 2.64 eV).

    摘要 I 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 第二章 合成與鑑定 8 2.1單晶與純相合成 8 2.2能量散佈光譜儀分析 11 2.3單晶X光繞射分析 13 2.4粉末X光繞射分析 14 2.5差示熱分析 15 2.6紫外光–可見–近紅外光光譜儀分析 16 第三章 結果與討論 17 3.1化合物之單晶結構 17 3.2純相合成及分析 26 3.3熔點及再結晶點分析 29 3.4能隙值量測 30 第四章 結論 31 參考文獻 32 附錄 34 表A– 1化合物1單晶繞射數據 34 表A– 2化合物1原子位置、熱擾動參數及佔有率 35 表A–3化合物1熱擾動參數 36 表A– 4化合物1全部鍵長(Å) 37

    (1) Li, M.-Y.; L, B.-X.; Lin, H.; Shi, Y.-F.; Ma, Z.; Wu, L.-M.; Wu, X.-T.; Zhu, Q.-L. , Inorg. Chem. 2018, 57, 8730-8734.
    (2) Boyd, G. D.; Buehler, E.; Storz, F. G.; Wernick, J. H. , IEEE Journal of Quantum Electronics 1972, 8, 419-426.
    (3) Byer, R. L. , ‎IEEE J. Sel. Top. Quantum Electron 2000, 6, 911-930.
    (4) Chen, C.-T.; Liu, G.-Z. , Ann. Rev. Mater. Sci. 1986, 16, 203-243.
    (5) Li, Z.; Jiang, X.; Yi, C.; Zhou, M.; Guo, Y.; Luo, X.; Lin, Z.; Wu, Y.; Shi, Y.; Yao, J. , J. Mater. Chem. C. 2018, 6, 10042-10049.
    (6) Lin, Y.-J.; Liu, B.-W.; Ye, R.; Jiang, X.-M.; Yang, L.-Q.; Zeng, H.-Y.; Guo, G.-C. , J. Mater. Chem. C 2019, 7, 4459-4465.
    (7) Abrahams, S. C.; Bernstein, J. L. , ‎J. Chem. Phys. 1973, 59, 1625-1629.
    (8) Boyd, G. D.; Kasper, H.; McFee, J. H. , ‎IEEE J. Quantum Electron 1971, 7, 563-573.
    (9) Lai, W.-H.; Haynes, A. S.; Frazer, L.; Chang, Y.-M.; Liu, T.-K.; Lin, J.-F.; Liang, I.-C.; Sheu, H.-S.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F. , Chem. Mater. 2015, 27, 1316-1326.
    (10) Li, S.-F.; Jiang, X.-M.; Liu, B.-W.; Yan, D.; Zeng, H.-Y.; Guo, G.-C. , Inorg. Chem. 2018, 57, 6783-6786.
    (11) Byer, R. L.; Choy, M. M.; Herbst, R. L.; Chemla, D. S.; Feigelson, R. S. , Appl. Phys. Lett. 1974, 24, 65-68.
    (12) Liang, F.; Kang, L.; Lin, Z.; Wu, Y. , Cryst. Growth 2017, 17, 2254-2289.
    (13) Lin, H.; Li, B.-X.; Chen, H.; Liu, P.-F.; Wu, L.-M.; Wu, X.-T.; Zhu, Q.-L. , Inorg. Chem. Front. 2018, 5, 1458-1462.
    (14) Becker, P. , Adv. Mater. 1998, 10, 979-992.
    (15) Kang, L.; Ramo, D. M.; Lin, Z.; Bristowe, P. D.; Qin, J.; Chen, C. , J. Mater. Chem. C 2013, 1, 7363-7370.
    (16) Li, G.; Wu, K.; Liu, Q.; Yang, Z.; Pan, S. , J. Am. Chem. Soc. 2016, 138, 7422-7428.
    (17) Li, S.-F.; Jiang, X.-M.; Fan. Y.-H.; Liu, B.-W.; Zeng, H.-Y.; Guo, G.-C. , Chem. Sci. 2018, 9, 5700-5708.
    (18) Shoji, I.; Kondo, T.; Kitamoto, A.; Shirane, M.; Ito, R. , J. Opt. Soc. Am. 1997, 14, 2268-2294.
    (19) Halasyamani, P. S.; Poeppelmeier, K. R. , Chem. Mater. 1998, 10, 2753-2769.
    (20) Jiang, J.; Mei, D.; Gong, P.; Lin, Z.; Zhong, J.; Wu, Y. , RSC Adv. 2017, 7, 38044-38051.
    (21) Morris, C. D.; Li, H.; Jin, H.; Malliakas, C. D.; Peters, J. A.; Trikalitis, P. N.; Freeman, A. J.; Wessels, B. W.; Kanatzidis, M. G. , Chem. Mater. 2013, 25, 3344-3356.
    (22) Boucher, F.; Evain, M.; Brec, R. , ‎J. Alloys Compd. 1994, 215, 63-70.
    (23) Luo, X.; Liang, F.; Zhou, M.; Guo, Y.; Li, Z.; Lin, Z.; Yao, J.; Wu, Y. , Inorg. Chem. 2018, 57, 9446-9452.
    (24) Huang, F. Q.; Somers, R. C.; McFarland, A. D.; Duyne. R. P. V,; Ibers, J. A. , J. Solid State Chem. 2003, 174, 334-341.
    (25) Rosario, A.-G.; Asiloe, J. M.; Dwight, R. A.-N.; Gerzon, E. D.; Santos, A. L.-R.; Andrew, N. F.; Andres, E. M.; John, W. S. , J. Appl. Cryst. 2006, 39, 1-5.
    (26) Brese, N. E.; O'keeffe, M. , Acta Cryst. 1991, 47, 192-197.

    下載圖示 校內:2025-07-16公開
    校外:2025-07-16公開
    QR CODE