簡易檢索 / 詳目顯示

研究生: 葉柏緯
Ye, Bo-Wei
論文名稱: 心外膜脂肪自動化量測之研究
The Study of Automatic Measurement for Epicardial Adipose Tissue
指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 電腦斷層心外膜脂肪組織主動輪廓模型部分體積體素部分體積校正體積量測
外文關鍵詞: Computed tomography (CT), adipose tissue (AT), active contour models (ACMs), partial volume voxels (PVVs), partial volume correction (PVC)
相關次數: 點閱:143下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不管是代謝綜合症及冠狀動脈粥樣硬化,這些病徵被許多論文證實與內臟脂肪體積有因果關係,心外膜脂肪的厚度被列為診斷心血管疾病的潛在因子。在許多臨床研究中,影像處理技術經常被應用在3-D醫學影像上。傳統的閥值二分法在計算醫學影像的脂肪體積時,經常因為醫學掃瞄儀器的處理造成拍攝物體與實際物體的誤差;此影響稱為部分體積效應。為了改善這個問題,我們提出自動化量測心外膜脂肪體積的演算法;此模型應用主動輪廓演算法用於影像的分割,同時提出部分體積校正法量測心臟脂肪體積,此法結合脂肪組織中像素強度與組織結構的特性作為權重因子,其量測脂肪組織的結果為脂防所佔的比例來表示,並使脂肪量測準確性提升。

    A large volume of research has confirmed an association between comprehensive metabolic syndrome and coronary atherosclerosis, both of which show excess visceral fat volume. The thickness of epicardial fat is an important factor in the diagnosis of these disorders. Many papers have proposed that epicardial fat is associated with cardiovascular disease. However, in many clinical studies, image-processing technology often used to create 3-D medical images. This often depends on calculation of medical images by traditional dichotomy threshold volume algorithms. Generally, errors in medical instrument scan processing occur by the shooting object and the actual object. In order to resolve this problem, we proposed automated measurement of epicardial fat volume algorithms. In this model, active contour algorithm has been used for image segmentation. We proposed partial volume correction method to measure the epicardial adipose volume. This method combines pixel intensity and structure of adipose tissue with weight factors. Our results showed that accuracy in fat measurement improved significantly. In addition, the epicardial adipose tissue, represented by a part of adipose tissue, and fat measurement accuracy was significantly improved.

    摘要 I Abstract II Table of Contents IV List of Tables VI List of Figure VII Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 Active contour models (ACMs) 4 2.2 K-means clustering 6 2.2 Partial volume correction (PVC) 8 Chapter 3 Materials 14 Chapter 4 Methods 15 4.1 Detect cardiac contour 17 4.2 Detect the possible adipose tissue inside of pericardium 21 4.3 Remove non-adipose tissue 21 4.4 Correct partial adipose volume 25 Chapter 5 Experimental results 32 Chapter 6 Conclusion 52 Chapter 7 Appendix 53 Reference 59

    [1]Lee MJ1, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 2013 Feb;34(1):1-11. [PubMed: 23068073].

    [2]Ozdemir O1, Hizli S, Abaci A, Agladioglu K, Aksoy S. Echocardiographic measurement of epicardial adipose tissue in obese children. Pediatr Cardiol. 2010 Aug;31(6):853-860. [PubMed: 20461364]

    [3]Bettencourt N1, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, Xará S, Leite-Moreira A, Nagel E, Gama V. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol. 2012 Jun 28;158(1):26-32. [PubMed: 21255849]

    [4]Mi-Jeong Lee, Yuanyuan Wu, Susan K. Fried. Adipose tissue heterogeneity: Implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 2013 Feb; 34(1):1-11. [PubMed: 23068073]

    [5]Momesso DP1, Bussade I, Epifanio MA, Schettino CD, Russo LA, Kupfer R. Increased epicardial adipose tissue in type 1 diabetes is associated with central obesity and metabolic syndrome. Diabetes Res Clin Pract. 2011 Jan;91(1):47-53 [PubMed: 21035889]

    [6]Fowler PA, Fuller MF, Glasbey CA, Cameron GG, Foster MA. Validation of the in vivo measurement of adipose tissue by magnetic resonance imaging of lean and obese pigs. The American journal of clinical nutrition. 1992; 56:7–13. [PubMed: 1609764]

    [7]Liu KH, Chan YL, Chan JC, Chan WB, Kong MO, Poon MY. The preferred magnetic resonance imaging planes in quantifying visceral adipose tissue and evaluating cardiovascular risk. Diabetes, obesity & metabolism. 2005; 7:547–554.

    [8]Pietrobelli A, Boner AL, Tato L. Adipose tissue and metabolic effects: new insight into measurements. International journal of obesity (2005). 2005; 29(Suppl 2):S97–100. [PubMed: 16385759]

    [9]Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obesity research. 2003; 11:304–310. [PubMed: 12582228]

    [10]Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obesity research. 2003; 11:304–310. [PubMed: 12582228]

    [11]Abbara S, Desai JC, Cury RC, Butler J, Nieman K, Reddy V. Mapping epicardial fat with multidetector computed tomography to facilitate percutaneous transepicardial arrhythmia ablation. European journal of radiology. 2006; 57:417–422. [PubMed: 16434161]

    [12]CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007; 116:39–48. [PubMed: 17576866]

    [13]Sjostrom L, Kvist H, Cederblad A, Tylen U. Determination of total adipose tissue and body fat in women by computed tomography, 40K, and tritium. The American journal of physiology. 1986; 250:E736–745. [PubMed: 3717334]

    [14]Kvist H, Chowdhury B, Sjostrom L, Tylen U, Cederblad A. Adipose tissue volume determination in males by computed tomography and 40K. International journal of obesity. 1988; 12:249–266. [PubMed: 3391740].

    [15]Shashaty MG1, Kalkan E, Bellamy SL, Reilly JP, Holena DN, Cummins K, Lanken PN, Feldman HI, Reilly MP, Udupa JK, Christie JD. Computed tomography-defined abdominal adiposity is associated with acute kidney injury in critically ill trauma patients*. Crit Care Med. 2014 Jul; 42(7):1619-1628. [PubMed: 24776609]

    [16]Dey D1, Suzuki Y, Suzuki S, Ohba M, Slomka PJ, Polk D, Shaw LJ, Berman DS. Automated quantitation of pericardiac fat from noncontrast CT. Invest Radiol. 2008 Feb; 43(2):145-53. [PubMed: 24776609]

    [17]Tamarappoo B1, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY, Friedman JD, Hayes SW, Thomson LE, Slomka PJ, Rozanski A, Berman DS. Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT. JACC Cardiovasc Imaging. 2010 Nov; 3(11):1104-1112. [PubMed: 21070997]

    [18]T. Rohlfing, R. Brandt, R. Menzel, D. B. Russakoff, and C. R. Maurer, Jr. “Quo vadis, atlas-based segmentation?,” in Handbook of Biomedical Image Analysis (Springer U.S., 2005), pp. 435–486.

    [19]Shahzad R1, Bos D, Metz C, Rossi A, Kirisli H, van der Lugt A, Klein S, Witteman J, de Feyter P, Niessen W, van Vliet L, van Walsum T. Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach. Med Phys. 2013 Sep; 40(9):091910. [PubMed: 24007161]

    [20]Xiaowei Ding,1,2 Demetri Terzopoulos,2 Mariana Diaz-Zamudio,4 Daniel S Berman,3,5 Piotr J Slomka,3,5 Damini Dey,1,5. Automated Epicardial Fat Volume Quantication from Non-contrast CT. Proc. SPIE 9034, Medical Imaging 2014: Image Processing, 90340I (21 March 2014)

    [21]Xiaowei Ding, Demetri Terzopoulos, Mariana Diaz-Zamudio, Daniel S. Berman, Piotr J. Slomka, and Damini Dey. Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT. Medical Physics 42, 5015 (2015);

    [22]Tamarappoo B1, Dey D, Shmilovich H, Nakazato R, Gransar H, Cheng VY, Friedman JD, Hayes SW, Thomson LE, Slomka PJ, Rozanski A, Berman DS. Increased Pericardial Fat Volume Measured From Noncontrast CT Predicts Myocardial Ischemia by SPECT. JACC Cardiovasc Imaging. 2010 Nov; 3(11):1104-1112. [PubMed: 21070997]

    [23]J. Yuan. Active contour driven by region-scalable fitting and local Bhattacharyya distance energies for ultrasound image segmentation. IET Image Processing. 2011 December.

    [24]Jamshid Dehmeshki. Volumetric Quantification of Atherosclerotic Plaque in CT Considering Partial Volume Effect. IEEE Transactions on Medical Imaging (Volume:26 ,Issue: 3 ). 273-282. [PubMed: 17354634]

    下載圖示 校內:2022-02-07公開
    校外:2022-02-08公開
    QR CODE