| 研究生: |
黃莉雯 Huang, Li-Wen |
|---|---|
| 論文名稱: |
鋯摻雜鈦酸鋇介電材料 (Ba0.997(Ti1-xZrx)O3, x = 0 - 0.5)之製備、分析、與電性 Preparation, Characterization, and Dielectric Property of Zirconium-Doped Barium Titanates |
| 指導教授: |
黃啓原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 鈦酸鋇 、鋯摻雜 、介電性質 、絕緣電阻率 、核殼結構 |
| 外文關鍵詞: | Barium titanate, zirconium doped barium titanate, dielectric constant, insulation resistivity, core-shell structure |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用固態反應法進行鈦酸鋇 (BT) 與鋯摻雜鈦酸鋇 (BTZ) 合成 Ba0.997(Ti1-xZrx)O3 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5) 之固溶體,在固定鋇鈦比的條件下,添加多量的鋯於鈦酸鋇中進行陶瓷體的製備及電性量測,為了驗證添加多量的鋯會使能階上升,進而絕緣電阻率亦會隨之上升的表現,因此在這項研究中,根據dopant的混合與否將實驗分為兩個部分。第一部分以不加任何dopant為主作為前置評估,藉此觀察大範圍添加Zr4+對結晶相、顯微結構、介電性質、晶體結構及絕緣電阻率的影響,以絕緣電阻率提升為純鈦酸鋇的兩倍為目標;第二部分則是選擇第一部分最佳的成分點範圍 Ba0.997(Ti1-xZrx)O3 (x=0, 0.3, 0.4, 0.5) 進行後續混合dopant (PS/ BZ01/ BZ02)的實驗。本研究透過二階段煅燒的實驗設計,合成出純相的鋯摻雜之鈦酸鋇粉末,且藉由調整第二階段的溫度及持溫時間能有效控制粉末粒徑大小。在無混合dopant之介電性質,發現隨著鋯添加量增加,其立方相結晶量提高,使極化量降低導致室溫下之介電常數呈現下降趨勢,居禮溫度也會同時往低溫偏移,而在室溫下之絕緣電阻率,Ba(Ti0.7Zr0.3)O3具有最好之表現,樣品絕緣電阻率值達到36 GΩ∙m約為BaTiO3的三倍;在混合dopant的實驗中,介電常數一樣會隨著鋯含量增加而下降,不過三種dopant對溫度與電容變化率曲線 (TCC curve) 影響不大,趨勢皆為相同,而在電阻率方面,發現混合Gd3+量較多的BZ02 dopant,Ba(Ti0.6Zr0.4)O3 之電阻率有相對較好的表現,經由TEM分析觀察其核殼結構 (Core-Shell structure),發現此成分點之shell較厚,因此本研究判斷含有 Gd3+ 之dopant相對較適合摻鋯的BTZ系統,能有效提升其絕緣電阻率之表現。
This study used the solid-solution reaction method to synthesize Zr-doped barium titanate Ba0.997(Ti1-xZrx)O3 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5). In the conditions of the same barium-titanate ratio, a large amount of zirconium was added to barium titanate for preparation of the ceramic body and electrical measurement. In this study, we discussed the effects of adding different dopants (PS/ BZ01/ BZ02) to the synthesis process. The results of the research show that the zirconium-doped barium titanate powder can be successfully synthesized by controlling the particle size through two-stage calcination to meet the industrial specification of 500nm. Through X-ray diffraction pattern and Rietveld refinement actuarial calculation, it can be observed x = 0 tends to the tetragonal; x = 0.1 - 0.5 tends to the cubic. In terms of electrical analysis without adding dopant, the dielectric constant of Ba(Ti1-xZrx)O3 ceramics decrease with the increase of Zr content at room temperature. At room temperature, the insulation resistivity of Ba(Ti0.7Zr0.3)O3 is higher than that of BaTiO3. The insulation resistivity of the sample reaches 36 GΩ·m, which is three times that of BaTiO3. In terms of electrical analysis with adding dopant, it is found that the resistivity of Ba(Ti0.6Zr0.4)O3 performs better than that of BaTiO3, so this study judges that the dopant containing Gd3+ is relatively suitable for the BTZ system doped with zirconium, which can effectively improve its performance of insulation resistivity.
1. K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, and H. W. Jang, “Perspectives and Challenges in Multilayer Ceramic Capacitors for Next Generation Electronics.” Journal of Materials Chemistry, vol. 7, no. 32, pp. 9782-9802, (2019).
2. W.-D. Kingery, H.-K. Bowen, and D.-R. Uhlmann, Introduction to Ceramics, America: John wiley & sons, (1976).
3. D. Rase and R. Roy, “Phase Equilibria in the System BaO-TiO2.” Journal of the American Ceramic Society, vol. 38, no. 3, pp. 102-113, (1955).
4. L.-C. Dufour and C. Monty, Surfaces and Interfaces of Ceramic Materials: Springer Science & Business Media, (2012).
5. 吳朗,電工材料: 全華圖書,(2012)。
6. K. Kiss, J. Magder, M.-S. Vukasovich, and R.-J. Lockhart, “Ferroelectrics of Ultrafine Particle Size: I, Synthesis of Titanate Powders of Ultrafine Particle Size.” Journal of the American Ceramic Society, vol. 49, no. 6, pp. 291-295 (1966).
7. 張哲源,以尿素-硝酸鋇沉澱之碳酸鋇披覆於二氧化鈦以合成鈦酸鋇之研究。國立成功大學資源工程研究所碩士論文,(2007)。
8. S. Lee, C.-A. Randall, and Z.-K. Liu, “Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate.” Journal of the American Ceramic Society, vol. 90, no. 8, pp. 2589-2594, (2007).
9. S. Lee, Z.-K. Liu, M.-H. Kim, and C.-A. Randall, “Influence of Nonstoichiometry on Ferroelectric Phase Transition in BaTiO3.” Journal of Applied Physics, vol. 101, no. 5, (2007).
10. N.-M. Hwang, S.-H. Yoon, J.-H. Lee, and D.-Y. Kim, “Effect of the Liquid-Phase Characteristic on the Microstructures and Dielectric Properties of Donor-(Niobium) and Acceptor-(Magnesium) Doped Barium Titanate.” Journal of the American Ceramic Society, vol. 86, no. 1, pp. 88-92 (2003).
11. 杜明婷,鋇鈦比對鈦酸鋇粉末晶粒大小及結晶相之影響。國立成功大學資源工程研究所碩士論文,(2008)。
12. R. Sharma, N.-H. Chan, and D. Smyth, “Solubility of TiO2 in BaTiO3.” Journal of the American Ceramic Society, vol. 64, no. 8, pp. 448-451, (1981).
13. G. Arlt, D. Hennings, and G. De With, “Dielectric Properties of Fine‐Grained Barium Titanate Ceramics.” Journal of Applied Physics, vol. 58, no. 4, pp.1619-1625, (1985).
14. C.-G. Bergeron and S.-H. Risbud, Introduction to Phase Equilibria in Ceramics, America: Wiley, (1984).
15. M. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, “Influence of Foreign Ions on the Crystal Structure of BaTiO3.” Journal of the European ceramic society, vol. 20, no. 12, pp.1997-2007, (2000).
16. L.-A. Xue, Y. Chen, and R.J. Brook, “The Influence of Ionic Radii on the Incorporation of Trivalent Dopants into BaTiO3.” Materials Science and Engineering: B, vol. 1, no. 2, pp. 193-201, (1988).
17. J. Zhi, A. Chen, Y. Zhi, P.-M. Vilarinho, and J.-L. Baptista, “Incorporation of Yttrium in Barium Titanate Ceramics.” Journal of the American Ceramic Society, vol. 82, no. 5, pp.1345-1348, (1999).
18. M. K. Buscaglia, M. Viviani, V. Buscaglia, C. Bottino, and P. Nanni, “Incorporation of Er3+ into BaTiO3.” Journal of the American Ceramic Society, vol.85, no. 6, pp.1569-1575, (2002).
19. O. Muller and R. Roy, The Major Ternary Structural Families, Berlin-Heidelberg-New York: Springer-Verlag, (1974).
20. 吳朗,電子陶瓷:全欣圖書,(1992)。
21. J. Lin and T. Wu, “Effects of Isovalent Substitutions on Lattice Softening and Transition Character of BaTiO3 solid Solutions.” Journal of Applied Physics, vol. 68, no. 3, pp. 985-993, (1990).
22. D. Makovec, Z. Samardžija, U. Delalut, and D. Kolar, “Defect Structure and Phase Relations of Highly Lanthanum‐Doped Barium Titanate.” Journal of the American Ceramic Society, vol. 78, no. 8, pp. 2193-2197, (1995).
23. S. Sato, Y. Nakano, A. Sato, and T. Nomura, “Effect of Y-Doping on Resistance Degradation of Multi-Layer Ceramic Capacitors with Ni Electrodes under the Highly Accelerated Life Test.” Japanese Journal of Applied Physics, vol. 36, no. 9S, pp. 6016, (1997).
24. D. Hennings, A. Schnell, and G. Simon, “Diffuse Ferroelectric Phase Transitions in Ba(Ti1‐yZry)O3 Ceramics.” Journal of the American Ceramic Society, vol. 65, no. 11, pp. 539-544, (1982).
25. P. Dobal, A. Dixit, R. Katiyar, Z. Yu, R. Guo, and A. Bhalla, “Micro-Raman scattering and Dielectric Investigations of Phase Transition Behavior in the BaTiO3-BaZrO3 System.” Journal of Applied Physics, vol. 89, no. 12, pp.8085-8091, (2001).
26. Z. Sun, Y. Pu, Z. Dong, Y. Hu, X. Liu, and P. Wang, “Effect of Zr4+ Content on the TC Range and Dielectric and Ferroelectric Properties of BaZrxTi1-xO3 Ceramics Prepared by Microwave Sintering.” Ceramics International, vol. 40, no. 2, pp. 3589-3594, (2014).
27. W. Cai, C. Fu, J. Gao, and H. Chen, “Effects of Grain Size on Domain Structure and Ferroelectric Properties of Barium Zirconate Titanate Ceramics.” Journal of Alloys and Compounds, vol. 480, no. 2, pp. 870-873, (2009).
28. R. D. Levi, “Solid Solution Trends that Impact Electrical Design of Submicron Layers in Dielectric Capacitors.” Ph.D. Thesis, The Pennsylvania State University, University Park, PA, (2009).
29. S. Lee, W.H. Woodford, and C.A. Randall, “Crystal and Defect Chemistry Influences on Band Gap Trends in Alkaline Earth Perovskites.” Applied Physics Letters, vol. 92, no. 20, p.201909, (2008).
30. T. Nagai, K. Iijima, H.-J. Hwang, M. Sando, T. Sekino, and K. Niihara, “Effect of MgO Doping on the Phase Transformations of BaTiO3.” Journal of the American Ceramic Society, vol. 83, no. 1, pp. 107-12, (2000).
31. Y. Sakabe, Y. Hamaji, H. Sano, and N. Wada, “Effects of Rare-Earth Oxides on the Reliability of X7R Dielectrics.” Japanese Journal of Applied Physics, vol. 41, no. 9R, p. 5668, (2002).
32. G. Yao, X. Wang, and L. Li, “Study on Occupation Behavior of Y2O3 in X8R Nonreducible BaTiO3-based Dielectric Ceramics.” Japanese Journal of Applied Physics, vol. 50, no. 12R, p. 121501, (2011).
33. X. Xu, P. Pinceloup, A. Gurav, M. Randall, A. Tajuddin, and G.-Y. Yang, “High Reliability Thin Layer BME X7R Dielectric with Only Few Core-Shell Grains.” in 2006 15th International Symposium on the Applications of Ferroelectrics, IEEE, pp. 17-20, (2006).
34. S. Sato, Y. Fujikawa, and T. Nomura, “Effect of Rare-Earth Doping on the Temperature-Capacitance Characteristics of MLCCs with Ni Electrodes.” The Ceramic Society of Japan, pp. 481-485, (2004).
35. S. C. Jeon, B. K. Yoon, K. H. Kim, and S. J. L. Kang, “Effects of Core/Shell Volumetric Ratio on the Dielectric-Temperature Behavior of BaTiO3.” Journal of Advanced Ceramics, vol. 3, no. 1, pp. 76-82, (2014).
36. T. Nishino, “Formation Process of Metastable Phase (δ) of Alkaline‐Earth Carbonate.” Journal of the American Ceramic Society, vol. 70, no. 7, pp. C‐162-C‐164, (1987).
37. D. Yoon, “Tetragonality of Barium Titanate Powder for a Ceramic Capacitor Application.” Journal of Ceramic Processing Research, vol. 7, no. 4, p. 34, (2006).
38. Che-Yi, S., T. Ming-Ting, L. Chun-Te, and H. Chi-Yuen, “Effect of Ba/Ti Ratio on Crystallite Size and Crystalline Phase of BaTiO3 Powders.” 日本セラミックス協会年会・秋季シンポジウム 講演予稿集, p. 8, (2009).
39. S. J. Kuang, X. G. Tang, L. Y. Li, Y. P. Jiang, and Q. X. Liu, “Influence of Zr Dopant on the Dielectric Properties and Curie Temperatures of Ba(ZrxTi1-x)O3 (0 ≤ x ≤ 0.12) Ceramics.” Scripta Materialia, vol. 61, no. 1, pp. 68-71, (2009).
40. R. E. Ward, C. L. Freeman, J. S. Dean, D. C. Sinclair, and J. H. Harding, “Using Metadynamics to Obtain the Free Energy Landscape for Cation Diffusion in Functional Ceramics: Dopant Distribution Control in Rare Earth‐Doped BaTiO3.” Advanced Functional Materials, vol. 30, no. 6, (2019).
41. Y. Tsur, T. D. Dunbar, and C. A. Randall, “Crystal and Defect Chemistry of Rare Earth Cations in BaTiO3.” Journal of Electroceramics, vol. 7, no. 1, pp. 25-34, (2001).
42. S.-F. Wang, Y.-F. Hsu, C.-W. Chang, B.-C. Lai, J.-H. Li, and Y.-C. Lai, “DC Bias Characteristics of BaTi0.65Zr0.35O3 with Additives (Gd2O3, SiO2, MgO) for Multilayer Ceramic Capacitors.” Ceramics International, vol. 46, no. 18, pp. 28227-28236, (2020).
43. S.-F. Wang, Y.-F. Hsu, C.-W. Chang, Y.-L. Liao, J.-H. Li, and Y.-C. Lai, “Dielectric Properties and DC Bias Characteristics of BaTi1-mZrmO3-x mol.% MgO-4.5 mol.% Gd2O3-2 mol.% SiO2 Ceramics.” Journal of Electronic Materials, vol. 50, no. 10, pp. 5946-5954, (2021).
44. S. Sato, Y. Nakano, A. Sato, and T. Nomura, “Mechanism of Improvement of Resistance Degradation in Y-doped BaTiO3 Based MLCCs with Ni Electrodes Under Highly Accelerated Life Testing.” Journal of the European Ceramic Society, vol. 19, no. 6-7, pp. 1061-1065, (1999).
45. D. F. K. Hennings, C. Metzmacher, and B. S. Schreinemacher, “Defect Chemistry and Microstructure of Hydrothermal Barium Titanate.” Journal of the American Ceramic Society, vol. 84, no. 1, pp. 179-182, (2001).
校內:2028-08-14公開