簡易檢索 / 詳目顯示

研究生: 黃奕璋
Huang, Yi-Chang
論文名稱: 釔鋇銅氧高溫超導體表面熔融晶粒再成長接合製程探討
Study of Joining High Temperature Superconductor YBCO Bulk by Surface Melting Re-growth Method
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 149
中文關鍵詞: 超導體擄獲磁場塊材尺寸超導接合角度耦合
外文關鍵詞: Superconductor, Trapped field, Bulk size, Joining of superconductor, grain orientation
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超導接合技術為多塊超導單晶粒以熔融製程進行結合,形成未具有高角度晶界之大尺寸單晶粒塊材,提升擄獲磁場能力,同時增加單晶形狀上的多元性。本研究利用高溫熔融超導塊材表面的方式,藉由控制製程溫度、時間及降溫速率,以內部未破壞之Y123單晶粒母材作為晶種以重新成長,維持整體單晶粒形貌並達接合目的,避免接合劑及液相殘留現象對於超導性質的影響。
    製程上包含多段式及單段式曲線兩種設定模式。多段式曲線為利用升溫,降溫,升溫的方式使塊材反覆熔融表面區域以構成接合良好且可相對完整保留內部單晶粒母材之製程。本團隊發現在相對低溫的參數下,多段式曲線確實可避免液相殘留的發生,並得到良好再成長(re-growth)的單晶面,於(001)/(001)方位接合樣品中擄獲0.15KG的單峰磁場(並無出現弱接點效應),但樣品接合比例低(61%),塊材機械性質差,不利於後續發展及應用。相對於此,以單段式曲線增加持溫時間雖然會造成熔融區域較深,但較多的液相有效地促進原子擴散,成功將接合比例提升至77%,並於(001)/(001)方位接合樣品之擄獲磁場強度提升至0.45KG。
    以單段式最佳化曲線進行a-b平面接合(包含(100)/(100)及(110)/(110)方位),可得到單峰或是類單峰的擄獲磁場型貌。於尺寸為17mm ×17mm之a-b平面接合樣品可擄獲1.08KG的磁場(77K,1T),已接近相等面積單晶粒塊材之擄磁強度(~1KG)。以二維XRD進行極圖線性掃描(line scan)之分析,發現單峰及類單峰樣品有極佳的角度耦合情況,推測並非晶格取向差異造成的弱接點效應。藉由微結構分析,於類單峰形貌樣品之接合界面發現局部Y211缺乏區,此區域認為與液相流動和晶體再成長過程中的排推效應(push trap effect)相關。Y211與Y123之界面缺陷為有效釘扎中心(pinning center),故Y211缺乏區將無法有效釘扎磁場,使擄獲磁場強度下降。本研究針對樣品不同區域之Y211比表面積與其釘扎能力(Jc)作比較,證實為Y211缺乏區造成擄磁類單鋒形貌。
    考量樣品接點機械強度較弱,本研究將接合樣品以碳纖維布進行強度強化。由三點抗彎量測可發現,披覆碳纖維布之接合樣品其接點強度可由12.8Mpa上升至72.7Mpa,且於45K,外加磁場3T的情況下可擄獲5KG的高磁場而不產生破裂。

    Joining technology of superconductor is a method to connect multiple single grains together by melting process, and form a larger single grain bulk without high angle grain boundary. Using this technology it not only improves the trapped field ability of superconductor, but also increases the diversity of the shape. In this study, entire surface of joint samples are melted by well control of the process temperature, holding time and cooling rate, and the original bulk inside the melting zone is taken as seed to re-grow to a single grain. It should be noticed that this method avoids addition of join agent and prevents the residual liquid phase, which may weaken the superconductivities.
    Two kinds of joint profile are used in the experiments: multi-step melting process and single-step melting process. In multi-step process, by repeating rising and cooling processes the surface of jointing bulks are melted and form good joint at the same time protect the original bulk.The low temperature parameters displayed single cone shape trapped field distribution(0.15KG) at (001)/(001) joint samples with well re-growth grain quality and no residual liquid phase. However, low Tmax parameters shows lower conjugate proportion (61%), which results in poor mechanical properties, hinders further development and application. Therefore, the low temperature single-step melting process with longer holding time had been developed, which increased the melting region and promoted the diffusion of atoms. It shows the conjugate proportion increased to 73.1% and trap field strength increased to 0.45KG
    The optimal single-step process is used to fabricate the a-b plane joint technique (including (100)/(100)&(110)/(100) orientation) . The symmetry single cone shape and the asymmetry single-like cone shape morphology can be observed, the trapped field strength can reach to 1.08KG at 17mm x 17mm sample (77K,1T), almost the same as the self-prepared YBCO bulks (~ 1KG) by TSMT method with similar size. By 2D-XRD analysis (pole figure), single cone and single cone-like sample show good grain orientation result, it means that the single cone-like morphology affect by other reason. With micro-structure analysis, some Y211 lack region can be observed in the vicinity of joint boundary, and this area is considered related to the flow of liquid phase and push trap effect. Y211/Y123 boundary is an effect pinning center, therefore, this Y211 lack region will not be able to provide effective pinning center and decreasing the trapped field result. When comparing the trapped field result and specific surface area of Y211 at different position, it is found the trap filed indeed affect by this Y211 lack region.
    Also the mechanical property of joint samples can be enhanced from 12.8Mpa to 72.7Mpa by carbon fiber coating. The sample of c-axis joint and a-b plane joint can trap 2.1KG and 5KG respectively at 45K, 3T and did not rupture.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 銅氧化物超導塊材的研究與應用 2 1-3 研究目的 2 第二章 理論基礎與文獻回顧 4 2-1 超導體的發展歷程與基礎理論 4 2-1.1超導體的發展歷程 4 2-1.2超導體特性[5] 6 2-1.3 BCS理論[5] 8 2-1.4晶界的弱接點效應(Weak-links)[5] 9 2-1.5 Ginzburg-Landau Theory [8] 10 2-1.6超導體的分類[5] 11 2-1.7 Bean Model 13 2-2 Y-Ba-Cu-O 超導單晶粒成長 14 2-2.1 YBCO晶體結構 14 2-2.2熔融織構製程發展 15 2-2.3頂端接種熔融織構製程[10] 16 2-2.4頂端接種熔融織構製程之晶體成長模式[22,23] 17 2-2.5充氧退火製程與雙晶結構 19 2-3 超導體接合技術 19 2-3.1超導體應用範圍 19 2-3.2晶面角度耦合對臨界電流密度的影響 20 2-3.3熔融製程成長限制 20 2-3.4大面積單晶釔鋇銅氧超導體的製作 21 2-3.5超導體接合種類及特性 23 2-3.6表面熔融晶粒再成長接合法 24 2-3.7製程溫度曲線的影響 25 2-3.8排推效應(Push-trap effect) 27 2-3.9極圖(pole figure)分析[42] 27 2-3.10碳纖維布披覆 28 第三章 實驗方法及步驟 53 3-1 實驗材料 53 3-2 實驗流程 54 3-2.1 Y123、Y211超導起始粉末製作 54 3-2.2單晶粒釔鋇銅氧超導塊材製作 54 3-2.3接合塊材樣品製備 55 3-2.4最佳化接合曲線研究 55 3-2.5充氧退火 56 3-2.6接合塊材強化研究 56 3-3 性質分析 57 3-3.1塊材表面形貌 57 3-3.2超導塊材擄獲磁場量測(Trapped field mapping) 57 3-3.3晶面方向性及角度耦合鑑定 57 3-3.4微結構觀察 58 3-3.5彎曲應力測試 58 3-4 儀器設備 59 第四章 實驗結果與討論 69 4-1 多段式熔融接合晶粒再成長對於晶面及超導性質的影響 69 4-1.1接合參數對於晶粒再成長的影響 70 4-1.2擄獲磁場(Trapped field) 71 4-1.3結論 72 4-2 多段式製程超導特性與微結構之關係 79 4-2.1接合比例計算 79 4-2.2接縫處成份觀察 80 4-2.3晶面成長方向與角度耦合差異(pole figure) 80 4-2.4雙晶結構與晶面角度關係 83 4-2.5降溫速率對於熔融晶粒再成長的影響 83 4-2.6綜合討論與結論 84 4-3 接合比例改善 - 單段式製程 98 4-3.1接合參數對於晶粒再成長的影響 98 4-3.2擄獲磁場(Trapped field) 99 4-3.3接合比例計算 99 4-3.4接縫處成份觀察 100 4-3.5晶面成長方向與角度耦合差異(pole figure & 雙晶結構) 100 4-3.6最佳接合曲線討論與建立 101 4-4 a-b方向接合製程 112 4-4.1表面晶面形貌觀察 112 4-4.2擄獲磁場(Trapped field) 112 4-4.3 (100)/(100)晶面成長方向與角度耦合差異 113 4-4.4 (110)/(110)晶面成長方向與角度耦合差異 115 4-4.5 Y211分布與比表面積比較 117 4-4.6結論 119 4-5 接合塊材機械性質之改善 136 4-5.1接合比例對機械性質的影響 136 4-5.2塊材披覆碳纖維布對機械性質的影響 137 4-5.3披覆塊材於高擄獲磁場的結果 138 4-5.4結論 139 第五章 結論 144 參考文獻 146

    [1]M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R.L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure.” Phys. Rev. Lett., 58, 908-910 (1987).
    [2]M. Tomita, and M. Murakami, “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.” Nature, 421, 517-520 (2003).
    [3]J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, “Superconductivity at 39K in magnesium diboride.”Nature ,410, 63-64 (2001).
    [4]K. Shimizu, H. Ishikawa, D. Takao, T. Yagi and K. Amaya., “Superconductivity in compressed lithium at 20 K.” Nature ,419, 597 - 599 (2002).
    [5]M. Cyrot and D. Pavuna, “Introduction to Superconductivity and High-Tc Materials.” World Scientific, (1992).
    [6]Q. Li, X. X. Xi, X. D. Wu et al., “Interlayer coupling effect in high-Tc superconductors probed by YBa2Cu3O7-x/PrBa2Cu3O7-x superlattices.” Phys. Rev. Lett., 64, 3086-3089 (1990).
    [7]Y. Zhao, C. H. Cheng, and J. S. Wang, “Flux pinning by NiO-induced nano-pinning centres in melt-textured YBCO superconductor.” Supercond. Sci. Technol.,18, S4 (2005).
    [8]D. C. Larbalestler et al., “Strongly linked current flow in polycrystalline forms of the superconductor MgB2.” Nature, 410, 186 (2001).
    [9]C. P. Bean, “Magnetization of high-field superconductors.” Reviews of Modern Physics, 36, 31-39 (1964).
    [10]Y. Shiohara, and A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials,” Mat. Sci. Eng. Reports, 19, 1-86 (1997).
    [11]S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. van Dover, G.W. Kammlott, R.A. Fastnacht and H.D. Keith, “High critical currents in Y-Ba-Cu-O superconductors.” Appl. Phys. Lett. , 52,2074 (1988).
    [12]K. Salama, B. Selvamanickam, L. Gao and K. Sun,“High current density in bulk YBa2Cu3Ox superconductor.” Appl. Phys. Lett., 54 ,2352 (1989).
    [13]H. Hojaji, K.A. Michael, A. Barkatt, A.N. Thorpe, F.W. Matthew, I.G. Talmy, D.A. Haught and S. Alterescu,“A comparative study of sintered and melt-grown recrystallized YBa2Cu3Ox.” J. Mater. Res., 4,28 (1989).
    [14]Murakami, M. Morita, K. Doi, and M. Miyamoto, “A New Process with the Promise of High Jc in Oxide Superconductors.” Appl. Phys. Part ,228, 1189 (1989).
    [15]C. Varanasi and P.J. McGinn, “Effect of YBa2Cu3O7-x grain size on the nucleation of Y2BaCuO5 during melt texturing.” Mater. Lett., 17,205 (1993).
    [16]H. Fujimoto, M. Murakami, S. Gotoh, N. Koshizuka and S. Tanaka, Adv. Supercond. Ⅱ,285 (1990).
    [17]Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W. Xiaozu ,“The properties of YBCO superconductors prepared by a new approach: the powder melting process.” Supercond. Sci. Technol. 3, 490 (1990).
    [18]Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W. Xiaozu, “High Jc YBCO superconductors Prepared by the Powder Melting Process.” IEEE Trans. Mag. ,27 , 912 (1991).
    [19]M. Morita, S. Takebayashi, M. Tanaka and K. Kimura, “Quench and Melt Growth (QMG) Process for Large Bulk Superconductor Fabrication.” Adv. Supercond., 3 ,733 (1991).
    [20]K. Sawano, M. Morita, M. Tanaka, T. Sasaki, K. Kimura, S. Takebayashi, M. Kimura and K. Miyamoto, “High Magnetic Flux Trapping by Melt-Grown YBaCuO Superconductors .”Jpn. J. Appl. Phys., 30 , L1157 (1991).
    [21]X. Chaud, D. Isfort, E. Beaugnon and R. tournier,“Isothermal growth of large YBa2Cu3O7-x single domains up to 93mm.” Physica C ,341-348, 2413-2416 (2000).
    [22]M. Murakami,“Melt Processed High-Temperature Superconductors.” World Scientific (1992).
    [23]R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak and D. Werder, “Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7–δ.” Nature ,329, 423 (1987).
    [24]陳引幹, “零電阻時代的超導陶瓷,” 科學發展, 3, 6~11, (2004).
    [25]C. Harnois , G. Desgardin, I. Laffez, X. Chaud, D. Bourgault,“High quality weld of melt textured YBCO using Ag doped YBCO junctions.” Physica C ,383, 269–278, (2002)
    [26]D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, “Orientation dependence of grain-boundary critical in YBa2Cu3O7 bicrystals.” Phys. Rev. Lett.,61,219,(1988).
    [27]D. T. Verebelyi et al., “Low angle grain boundary transport in YBa2Cu3O7 coated conductors.” Phys. Rev. Lett.,76,1755,(2000).
    [28]D. T. Verebelyi, C. Cantoni, J. D. Budai, D. K. Christen, H. J. Kim, and J. R. Thompson, “Critical current density of YBa2Cu3O7 low-angle grain boundaries in self-field.” Phys. Rev. Lett.,78,2031,(2001).
    [29]A. Goyal, D. P. Norton, J. D. Budai, M. Paranthaman etc.,“High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals.”Appl. Phys. Lett. ,69, 1795, (1996).
    [30]P Sch¨atzle etc. ,“Multi-seeded melt crystallization of YBCO bulk material for cryogenic applications.” Supercond. Sci. Technol., 12, 69–76, (1999).
    [31]T. Y. Li, C. L. Wang, L. J. Sun, S. B. Yan, L. Cheng, X. Yao, J. Xiong, B. W. Tao, J. Q. Feng, X. Y. Xu, C. S. Li, and D. A. Cardwell, “Multiseeded melt growth of bulk Y–Ba–Cu–O using thin film seeds.” Jpn. J. Appl. Phys. ,108, 023914, (2010).
    [32]王上瑜, “新穎薄膜晶種成長技術於大尺寸釔鋇銅氧超導晶體之研究” Material science and engineering, National Cheng Kung University, (2011).
    [33]K. Salama and V. Selvamanickam ,“Joining of high current bulk YBaCuO superconductors.” Appl. Phys. Lett., 60, 898 , (1992).
    [34]H. Zheng, B,W. Veal, A. Paulikas, R. Nikolova, U. Welp, H. Claus, and G.W. Crabtree,“Top Seeded Growth and Joining of Bulk YBCO.”Appl. Supercond. , 14-17, (1999).
    [35]J G Noudem, E S Reddy, M Tarka, M Noe and G J Schmitz ,“Melt-texture joining of YBa2Cu3Oy bulks.” Supercond. Sci. Technol. ,14 ,363–370, (2001)
    [36]T.A. Prikhna, W. Gawalek , V.E. Moshchil, N.V. Sergienko,V.B. Sverdun, etc.,“Joining of melt-textured YBCO using Tm123 powder as a solder.” Physica C , 386 ,221–224, (2003)
    [37]S.M. Mukhopadhyay ,N. Mahadev, S. Sengupta,“Microstructural and spectroscopic analyses of a strongly-linked joint formed in a superconductor.” Physica C ,329 95–101, (2000).
    [38]C. J. Kim, Y. A. Jee, S. C. Kwon, T. H. Sing and G. W. Hong, “Control of YBCO growth at the compact/substrate interface by bottom seeding and Yb2O3 coating in seeded melt-growth processed YBCO oxides using a MgO substrate.” Physica C ,315, 263-270 (1999).
    [39]Y. Nakamura, A. Endo and Y. Shiohara, “The relation between the undercooling and the growth rate of YBa2Cu3O6+x superconductive oxide.” J. Mater. Res., 11, 1094 (1996).
    [40]A. Endo, H.S. Chauhan, Y. Nakamura and Y. Shiohara, “Relationship between growth rate and undercooling in Pt-added Y1Ba2Cu3O7−x.” J. Mater. Res., 11, 1114 (1996).
    [41]N. Hayashi, P. Diko, K. Nagashima, S.I. Yoo, N. Sakai, M. Murakami, “Fabrication of large single-domain Sm123 superconductors by OCMG method.” Mat. Sci. Eng.,B 53, 104 (1998).
    [42]MULTEX User's Manual, DOC-M88-EXX050 V3 – 08.2008 i
    [43]M. Tomita, and M. Murakami, “Mechanical properties of bulk superconductors with resin impregnation”, Supercond. Sci. Technol. ,15,808-812,(2002).
    [44]吳采蓉, “樹脂與碳纖維布被覆對高溫超導塊材YBCO機械性質的影響” Material science and engineering, National Cheng Kung University ,(2004).
    [45]D. Pavuna, “Introduction to Superconductivity and High-Tc Materials.” World Scientific, (1992).
    [46]賴柏安, “單晶粒超導塊材擄獲磁場能力與機械性質之研究” Material science and engineering, National Cheng Kung University, (2006).
    [47]劉倩如, “添加氧化鋅/二氧化鈦電紡絲於釔鋇銅氧超導塊材之影響” Material science and engineering, National Cheng Kung University, (2011).
    [48]楊佳明, “新型鐵基超導材料FeSe之性質研究, ” Material science and engineering, National Cheng Kung University, (2008).
    [49]Y. Shiohara and A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials.” Mat. Sci. Eng., 1-2, R19 (1997).
    [50]T. Hatano, A. Matsushita, K. Nakamura, Y. Sakka, T. Matsumoto and K. Ogawa, “Superconducting and Transport Properties of Y-B-Cu-O Compounds –Orthorhombic and Tetragonal Phases.” Jpn. J. Appl. Phys. ,26, L721 (1987).
    [51]T. B. Lindemer, J. F. Hunley, J. E. Gates, Jr., A. L. Sutton, J. Brynestad, C. R. Hubbard and P. K. Gallagher, “Experimental and Thermodynamic Study of Nonstoichiometry in 〈YBa2Cu3O7-x〉.” J. Am. Ceram. Soc. ,72, 1775 (1989).
    [52]B. J. Lee and D. N. Lee, “Thermodynamic Evaluation for the Y2O3–BaO–CuOx System.” J. Am. Ceram. Soc. ,74, 78 (1991).
    [53]M.A. Rodriguez, B.J. Chen, and R.L. Snyder, “The Formation Mechanism of Melt-Textured YBa2Cu3O7, ” Physica C ,195 185-194 (1992).

    無法下載圖示 校內:2023-12-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE