簡易檢索 / 詳目顯示

研究生: 邱盟勝
Ciou, Meng-Sheng
論文名稱: 離心泵葉片五軸加工規劃與流場優化
Five-axis Machining Planning and Flow-field Optimization of Centrifugal Pump Impellers
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 162
中文關鍵詞: 離心泵五軸加工導流葉片流場分析
外文關鍵詞: flow simulation, five-axial machining, centrifugal pump, splitter blade
相關次數: 點閱:62下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   早期,巴比倫人便利用了大自然的「風」來推動風車、灌溉農田;羅馬人亦使用了風車及水車推動了「磨坊」與「鋸木廠」的機器運作。老祖先的智慧,乃在藉由動力機械裝置輔助人力和獸力,進一步取代超過人、獸力所能負荷的工作。然而在日新月異的發展之下,演變至今,機械的要求不僅僅是取代人力而已,在能源告急的今天,如何降低能源成本並提高產品附加價值已儼然成為產業界重要的議題。
      離心泵葉輪為三維扭轉曲面,其流體沿著曲面來改變流向或改變流體速度與壓力,促使能量提昇。而干涉程度大、形狀複雜、葉片外廓建構不易、多軸加工困難與複雜的流場特性,涵蓋著流場分析與五軸加工技術;同時,其相關技術亦為國防科技發展的關鍵技術。本文有鑑於此,以創成加工理念的體積掃掠法來設計建構流體葉輪外形;由三次仿線導入有理式B仿線來建構葉片空間曲線,用以平滑葉片曲面與加工,並搭配導流葉片冀以強化流場特徵,且利用類神經網路輔以最佳化方法進行流場參數尋優,最後則考慮葉輪的型式並加入葉頂間隙作為探討,並分析加工路徑之合理性,對不合理之加工路徑作一適當的修正。

      The Babylonian could use the wind to make the windmill work in the early stages. The Roman also used the windmill and the waterwheel to make the machines operating. The wisdom of forefather was making the mechanical device more useful to aid people’s living. Today, the machine is not only replace people work, but also save the source energy. It is the most important business to make the production more economic way.
      The centrifugal impeller is a three-dimensional twisted surface. The energy is transformed by the change of velocity and pressure. The flow simulation and five-axial machining technology of centrifugal impellers have some hard works, such as the interference of tools, the complex form of blades, the establishment of blade, multi-axial machining, and the complicated fluid characteristics. The blade design is the key point of the defensible technology. In this thesis, the volume swept method based on the generated machining concept will be used to construct the profile of centrifugal impellers. From cubic spline, the rational B-spline is used to construct the space-curve of surface and machining of blade smoothly. We would add the splitter blade to make the smoother fluid field. The artificial neural network combined with the optimum method is used to find the best parameter of fluid field. The impeller type and tip clearance is considered to analyze the fluid flow. Finally, the machining tool path would be modifying if the path were not reasonable.

    中文摘要…………………………………………………………………I 英文摘要…………………………………………………………………II 誌謝………………………………………………………………………III 目錄………………………………………………………………………IV 表目錄……………………………………………………………………VII 圖目錄……………………………………………………………………VIII 符號說明…………………………………………………………………XVI 第一章 緒論………………………………………………………………1 1-1 研究之動機與目的…………………………………………………1 1-1-1 泵之背景…………………………………………………………1 1-1-2 泵之種類…………………………………………………………4 1-1-3 目前尚未達成之目標與其困難…………………………………7 1-2 文獻回顧……………………………………………………………7 1-3 設計流程……………………………………………………………11 1-4 本文架構……………………………………………………………12 第二章 離心式葉片的設計與五軸加工…………………………………14 2-1 離心泵之設計參數…………………………………………………14 2-2 葉片外廓的產生與刀具路徑………………………………………19 2-3 葉片幾何與曲線之關係……………………………………………23 2-3-1 三次仿線合成……………………………………………………24 2-3-2 有理式 B仿線合成………………………………………………25 2-4 入出口角與曲線之關係……………………………………………29 2-5 刀具路徑的修正……………………………………………………30 第三章 流場數值模擬……………………………………………………33 3-1 基本假設……………………………………………………………33 3-2 統御方程式…………………………………………………………33 3-3 紊流模式……………………………………………………………35 3-3-1 紊流模式…………………………………………………………36 3-3-2 壁面函數…………………………………………………………37 3-4 數值方法……………………………………………………………38 3-4-1 平均雷諾 Navier Stokes方程式離散…………………………38 3-4-2 通量元素…………………………………………………………39 3-4-3 上風差分法………………………………………………………40 3-4-4 數值網格建立……………………………………………………41 3-4-5 邊界條件設定……………………………………………………43 第四章 類神經網路與最佳方法…………………………………………45 4-1 類神經網路…………………………………………………………45 4-1-1 倒傳遞類神經網路………………………………………………46 4-1-2 倒傳遞數學式……………………………………………………47 4-1-3 網路演算法………………………………………………………50 4-1-4 網路設定…………………………………………………………51 4-2 最佳化方法…………………………………………………………52 4-2-1 複合型法…………………………………………………………53 4-3 複合型法與類神經網路的搭配……………………………………56 第五章 結果與討論………………………………………………………57 5-1 厚度對流場的影響…………………………………………………57 5-2 初始葉形之比較與探討……………………………………………58 5-2-1 三次仿線…………………………………………………………58 5-2-2 有理式 B仿線……………………………………………………59 5-3 類神經網路與最佳化結果…………………………………………60 5-3-1 田口式方法………………………………………………………60 5-3-2 類神經網路的訓練………………………………………………63 5-3-3 複合型法尋優……………………………………………………63 5-4 最佳化流場分析與葉頂間隙的影響………………………………64 5-4-1 最佳化流場分析…………………………………………………64 5-4-2 葉頂間隙的流場…………………………………………………65 第六章 結論與未來展望…………………………………………………68 6-1 結論…………………………………………………………………68 6-2 未來展望……………………………………………………………69 參考文獻…………………………………………………………………72 附錄一、有理式 B仿線的微分形式……………………………………162

    [1]John W. Dufour, and William E. Nelson, “Centrifugal Pump Sourcebook,” McGraw-Hill, pp. 13, 1992.
    [2]陸敬嚴, ”中國機械史,” 越吟出版社, pp.7-8, 2001.
    [3]Eck, Bruno., ”Fans: Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans,” Pergamon Press, Oxford, 1973.
    [4]Lin, S. C., ”A Novel F-C Centrifugal Fan Design for Improved Performance,” Department of Mechanical Engineering Technical Report, Tennessee Technological University, 1982.
    [5]蘇聖斌、陳世雄, “軸流泵葉輪與導葉之設計分析,” 中國機械工程學會第十三屆全國學術研討會論文集, pp. 298-306, 1996年11月.
    [6]林志遠, “軸流風扇的性能提昇設計與測試,” 成功大學航空太空研究所碩士論文, 1997年7月.
    [7]Pierret, S., “Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network,” Transactions of the ASME Journal of Turbomachinery, Vol. 121, 1998.
    [8]李新立, ”工業用離心式風機實驗研究與性能提昇探討,” 國立清華大學碩士論文, 1998.
    [9]Oh, H. W., and Chung, M. K., “Optimum Values of Design Variables versus Specific Speed for Centrifugal Pumps” Proceedings of the Institution of Mechanical Engineers-A-Journal of Power and Energy, Vol. 213, pp. 219-226, 1999.
    [10]李生丕, ”應用類神經網路於軸流風扇葉片設計,” 成功大學機械工程研究所碩士論文, 1999.
    [11]林博正、杜黎蓉與吳建鋒, ”NURBS合成與凸輪機構之影響,” 中國機械工程學會, 第十六屆學術研討會, 1999.
    [12]Visser, F. C., Dijkers, R. J. H., and op de Woerd, J. G. H., “Numerical Flow-Field Analysis and Design Optimization of a High-Energy First-Stage Centrifugal Pump Impeller,” Computing and Visualization in Science, Vol. 3, Part. 1-2, pp. 103-108, 2000.
    [13]Lepine, J., Guibault, F., and Trepanier, J. Y., “Optimized Nonuniform Rational B-Spline Geometrical Representation for Aerodynamic Design of Wings,” AIAA Journal, Vol. 39, No 11., November, 2001.
    [14]顧哲安, ”筆記電腦之風扇設計與震動分析,” 成功大學機械系碩士論文, 2001.
    [15]黃家烈, ”筆記型電腦散熱風扇之研究,” 台灣科技大學機械系博士論文, 2001.
    [16]Oyama, A., Liou, M. S., “Multiobjective Optimization of Rocket Enngine Pumps Using Evolutionary Algorithm,” Journal of Propulsion and Power, Vol. 18, No. 3, May-June 2002.
    [17]C-S Ahn, and K-Y Kim, “Aerodynamic design optimization of a compressor rotor with Navier-Stokes analysis,” IMechE, Vol. 217, Part A, J. Power and Energy, pp. 179-183, 2003.
    [18]Al-Zubaidy, S. N., “A Proposed Design Package for Centrifugal Impellers,” Computers & Structures, Vol. 55, No. 2, pp. 347-356, 1995.
    [19]Chen, S. L., and Wang, W. T., “Computer Aided Manufacturing Technologies for Centrifugal Compressor Impellers,” Journal of Materials Processing Technology, Vol. 115, Issue. 3, pp. 284-293, 2001.
    [20]Morishige, K., and Takeuchi, Y., “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy,” IEEE Paper Robotics and Automation, Vol. 2, pp. 1241-1246, 1997.
    [21]莊禮彰, ”離心式壓縮機葉輪五軸加工規劃,” 台灣大學機械工程研究所博士論文, 2003.
    [22]Wu, C. H., ”A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial, and Mixed Flow Type,” NACA TN2604,1952.
    [23]Ni, R. H., ”A Multiple Grid Scheme for Solving the Euler Equations,” AIAA Journal, vol. 20 no. 11, 1982.
    [24]Chima, R. V., ”Inviscid and Viscous Flows in Cascades with an Explicit Multiple Grid Algorithm”, AIAA Journal, vol. 23, pp.1556-1563, 1985.
    [25]Moore,J. and Moore, J. E., ”Performance Evaluation of Linear Turbine Cascade Using Three-Dimensional Viscous Flow Calculations,” ASME Journal of Engineering for Gas Turbine and Power, vol. 17 no. 1, pp. 969-975, 1985.
    [26]Yamamoto, O., and Barton, J. M., ”Improved Euler Analysis of Advanced Turboprop Propeller Flows,” AIAA paper, no. 86-1521, 1986.
    [27]Denton, J. D., ”The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines,” Journal of Turbomachinery, vol. 114, pp. 18-26, 1992.
    [28]Raj, D. and Swim, W. B.,”Measurement of the Mean Flow Velocity and Fluctuations at the Exit of a F-C Centrifugal Fan Rotor”,Journal of Engineering for Power,vol. 103 no. 2, pp. 393-399,1981.
    [29]Rai, M. M., ”Navier-Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids,” Journal of Propulsion and Power, vol. 3 no. 5, pp. 387-396, 1987.
    [30]Han, C., ”Navier-Stokes Analysis of Three-Dimensional Unsteady Flows Inside Turbine Stages,” AIAA paper no. 92-3211, 28th Joint Propulsion Conference and Exhibit, Nashville, TN, July 1992.
    [31]Zhang, M. J., Pomfret, M. J., and Wong, C. M., “Three-Dimensional Viscous Flow Simulation in a Backswept Centrifugal Impeller at the Design Point,” Computers & Fluids, Vol. 25, No. 5, pp. 497-507, 1996.
    [32]Pak, E. T., and Lee, J. C., “Performance and Pressure Distribution Changes in a Centrifugal Pump Under Two-Phase Flow,” Proceedings of the Institution of Mechanical Engineers-A-Journal of Power and Energy, Vol. 212, pp. 165-171, 1998.
    [33]林顯群、黃家烈、簡宏斌、沈銘秋, ”軸流風扇之數值與實驗分析,”中華民國航太/燃燒/民航學會航太聯合會議, 桃園, pp. 107-117, 1999.
    [34]Su, S. P., Chen, S. H., Lee, L. C., and Hwang, T. Y., “The Use of CFD in Turbomachinery Applications,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 32, No. 1, pp. 1-24, 2000.
    [35]黃福居, ”全三維軸流風扇葉片最佳化設計,” 成功大學機械工程研究所碩士論文, 2001.
    [36]李海鋒, “利用三維紊流數值模擬進行離心葉輪設計比較,” 流體機械, 第29卷第9期, 第18-22頁, 2001.
    [37]Dawes, W. N., Dhanasekaran, P. C., Kellar, W. P., and Savill, A. M., “Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design,” Transactions of the ASME Journal of Turbomachinery, Vol. 123, Issue 3, pp. 552-557, 2001.
    [38]A. Demeulenaere, and R. Van den Braembussche, ”Three-Dimensional Inverse Method for Turbomachinery Blading Design,” Transactions of the ASME Journal of Turbomachinery, Vol. 120, 1998.
    [39]John T., John Wiley & Sons, Inc. “Centrifugal Pump Design,” New York, pp. 22, 2000.
    [40]Davidov, T., “General Idea of Generating Mechanism and its Application to Bevel Gear,” Mechanism and Machine Theory, Vol. 33, pp. 505-515, 1998.
    [41]吳坤憲, ”結合創成加工與流場計算之離心泵葉片優化設計,” 成功大學機械工程研究所碩士論文, 2002.
    [42]黃彥博, ”應用有理樣線法於離心流葉片之優化設計,” 成功大學機械工程研究所碩士論文, 2003.
    [43]K. Morishige, Y. Takeuchi, “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, pp. 1241-1246, 1997.
    [44]Launder, B. E., and Spalding, D. B., ”The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
    [45]Raithby, G.. D., “Skew Upstream Differencing Schemes for Problems Involving Fluid Flow,” Computer Methods in Applied Mechanics and Engineering, Vol. 9, pp. 153-164, 1976.
    [46]Huget, R. G., “The Evaluation and Development of Approximation Schemes for the Finite Volume Method,” University of Waterloo, Ph. D. Thesis, 1985.
    [47]Schneider, G. E., and Raw, M. J., “Control-Volume Finite Element Method for Heat Transfer and Fluid Flow Using Co-located Variables-1. Computational Procedure,” Numerical Heat Transfer, Vol. 11, pp. 363-390, 1987.
    [48]羅華強, ”類神經網路-MATLAB的應用,” 清蔚科技, 2001.
    [49]葉宜成, ”類神經網路模式應用與實作,” 儒林, 1993.
    [50]陳威昇, ”類神經網路訓練程序之些許建議,” 成功大學航空太空工程研究所碩士論文, 2003.

    下載圖示 校內:2009-07-13公開
    校外:2009-07-13公開
    QR CODE