| 研究生: |
鄭靖霖 Cheng, Ching-Lin |
|---|---|
| 論文名稱: |
生質物熱降解之焙燒強度因子及催化指標 Torrefaction severity factor and catalytic index for biomass thermodegradation |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 焙燒 、生物炭 、重量損失 、焙燒強弱因子 、線性回歸 、催催化熱解 、芳香烴 、ZSM-5 、催化指數(CI) 、芳香增強指數(AEI) 、熱裂解氣相層析質譜 、熱重-紅外分析儀 |
| 外文關鍵詞: | Torrefaction, Biochar, Weight loss, Torrefaction severity factor, Linear regression, Catalytic pyrolysis, Aromatic hydrocarbons, ZSM-5, Catalytic index (CI), Aromatic enhancement index (AEI), Py-GC/MS, TG-FTIR |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為研究生質物相關效能提升之方式,於本研究第一部分使用焙燒強度因子(TSF)來預測焙燒後的性質如重量損失、熱值、能量產率等,並可透過焙燒強度因子找出最佳的焙燒條件,以達到省時、省成本的效果。第二部分利用工業廢棄物高粱酒粕渣(SDR)及鋸木削(sawdust)透過添加沸石觸媒(ZSM-5),透過熱重分析(TGA)、熱裂解氣象層析質譜(Py-GC/MS)、並創造觸媒效應指標如觸媒效果面積(CEA)、觸媒指標(CI)、芳香烴提升指數(AEI)來探討觸媒對於生質物的影響。
第一部分是將焙燒程度的指標如重量損失(WL)、焙燒強弱性指數(TSI)和強弱程度因子(SF)進行修正,於強弱程度因子(SF)加入時間指數並找出新的指標稱為焙燒強度因子(TSF)用以預測焙燒性能。在本篇中使用了四種不同生質物,如: Chinese medicine residue, Arthrospira platensis residue, C. sp. JSC4, 和 spent coffee grounds,通過時間指數的優化之後,TSF可以準確地連結WL,並可以精確地表示焙燒強弱性,與SF相比最高可將預測準確度提升至13%。結果表明,TSF亦能夠預測enhancement factor of HHV 和 energy yield,而其決定係數(R2)皆超過0.83。總體而言,TSF成功地結合了操作條件(焙燒溫度、實驗時間)和生質物的性質,可應用於預測焙燒後的性質。應用於焙燒實驗的設計與反應時間,TSF提供了一種簡單快速的方法,可以達到節省實驗時間、成本與得到有效之預測。
在第二部分中,通過熱重分析儀(TG)和熱裂解氣相層析質譜(Py-GC / MS)研究了ZSM-5催化生物質的催化熱解現象和機制,本研究著重於催化效應、芳香烴的分析及芳香烴碳氫化合物(AHs)的形成。本實驗中使用兩種生質物分別為木屑(sawdust)及高粱酒粕渣(SDR),並同時考慮了四種不同生物質與觸媒(B:C)的比例,分別為1:0、1:1、1:5及1:10。生質物的熱解過程可分為三個區域,從傳熱主導區(區域)到催化主導區(區域2和3)。分別使用四個指標分別為差異強度(IOD),催化有效面積(CEA),催化指數(CI)和芳香烴增強指數(AEI),以測量ZSM-5對生質物熱解和AHs形成的催化作用。最大的IOD發生在區域2中,這表示最高的催化作用強度。此兩種生物量的CI值隨B / C比的增加而提升。但是,當鋸末熱解效應存在極限值,這表示鋸末的催化作用將會受到限制。當催化劑添加量越高,裂解氣流中的AHs比例越高。當B / C比為1/10時,鋸末和SDR的AEI值為27.33和10.33。這表明AHs的形成顯著增強,尤其是對於木屑。總體而言,在本研究中進行的指標可以提供有用的措施,以識別催化熱解動力學及產物。
With the depletion of fossil fuels and increasing attention to environmental protection. Bioenergy is one of the most promising renewable energy sources. Therefore, in recent years, the development of biomass conversion technology and many ways to improve the fuel characteristics of biomass, such as torrefaction, catalytic pyrolysis, etc. are popular. Hence, in the first part of this study, the torrefaction severity index (TSF) was used to predict the properties of terrified biomass such as weight loss (WL), high heating value (HHV), and energy yield. The suitable experimental conditions can be found through TSF, to save both time and cost. The second part of this study uses industrial waste i.e., sorghum distillery residue (SDR) and sawdust with different ratios of zeolite catalyst (ZSM-5), and through TGA, Py-GC/MS. Several indices are used to explore the effect of catalysts on biomass such as catalyst effect indicators such as catalytic effect area (CEA), catalytic index (CI), aromatics enhancement index (AEI).
The first part of the discussion is about torrefaction. Many indicators have been used to describe the torrefaction severity, such as; weight loss (WL), torrefaction severity index (TSI), and, severity factor (SF). In this study, the term torrefaction severity factor (TSF) is proposed by introducing a time exponent in SF. Four different biomass materials of Chinese medicine residue, Arthrospira platensis residue, C. sp. JSC4 and spent coffee grounds are examined. After the optimization of the time exponent, TSF can accurately correlate with WL and thereby torrefaction severity, and improve the prediction by up to 13% when compared to SF. Also, the results suggest that TSF can appropriately predict the enhancement factor of HHV and energy yield where the coefficient of determination (R2) is beyond 0.83. Overall, TSF has successfully combined the operating conditions (temperature and duration) and biomass species, which can be utilized for predicting torrefaction performance. This gives a simple and fast way for torrefaction operation and reactor design, thereby saving time and carrying out efficient predictions.
In the second part, catalytic pyrolysis phenomena and mechanisms of biomass with ZSM-5 are investigated via a thermogravimetric analyzer (TG) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), with particular emphasis on catalytic level identification and aromatic hydrocarbons (AHs) formation. Two biomass materials of sawdust and sorghum distillery residue (SDR) are investigated, while four biomass-to-catalyst (B:C) ratios of 1: 0, 1: 1, 1: 5, and 1:10 are considered. The pyrolysis processes of the biomasses can be divided into three zones, proceeding from a heat-transfer dominant zone (zone) to catalysis dominant zones (zones 2 and 3). Four indexes of the intensity of difference (IOD), catalytic effective area (CEA), catalytic index (CI), and aromatic enhancement index (AEI) are conducted to measure the catalytic effect of ZSM-5 on biomass pyrolysis and AHs formation. The maximum IOD occurs in zone 2, showing the highest intensity of the catalytic effect. The CI values of the two biomasses increase with increasing the B/C ratio. However, there exists a threshold for sawdust pyrolysis, indicating a limit for the catalytic effect on sawdust. The higher the catalyst addition, the higher the AHs proportion in the vapor stream. When the B/C ratio is 1/10, the AEI values of sawdust and SDR are 27.33 and 10.33. This reveals that AHs formation is intensified significantly, especially for sawdust. Overall, the indexes conducted in the present study can provide useful measures to identify the catalytic pyrolysis dynamics and levels.
[1] Ayalur Chattanathan S, Adhikari S, Abdoulmoumine N. A review on current status of hydrogen production from bio-oil. Renewable and Sustainable Energy Reviews 2012;16(5):2366-72.
[2] Anupam K, Sharma AK, Lal PS, Dutta S, Maity S. Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding. Energy 2016;106:743-56.
[3] Chen W-H, Wang C-W, Kumar G, Rousset P, Hsieh T-H. Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS. Bioresource Technology 2018;259:469-73.
[4] Chen W-H, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 2015;44:847-66.
[5] Park S-W, Jang C-H, Baek K-R, Yang J-K. Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products. Energy 2012;45(1):676-85.
[6] Chen W-H, Hsu H-C, Lu K-M, Lee W-J, Lin T-C. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 2011;36(5):3012-21.
[7] Chen D, Zheng Z, Fu K, Zeng Z, Wang J, Lu M. Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel 2015;159:27-32.
[8] Colin B, Dirion JL, Arlabosse P, Salvador S. Quantification of the torrefaction effects on the grindability and the hygroscopicity of wood chips. Fuel 2017;197:232-9.
[9] van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy 2011;35(9):3748-62.
[10] Sukiran MA, Abnisa F, Wan Daud WMA, Abu Bakar N, Loh SK. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management 2017;149:101-20.
[11] Chen W-H, Lu K-M, Tsai C-M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Applied Energy 2012;100:318-25.
[12] Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology 2008;89(2):169-75.
[13] Van Essendelft DT, Zhou X, Kang BSJ. Grindability determination of torrefied biomass materials using the Hybrid Work Index. Fuel 2013;105:103-11.
[14] Li J, Brzdekiewicz A, Yang W, Blasiak W. Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Applied Energy 2012;99:344-54.
[15] Abnisa F, Wan Daud WMA. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management 2014;87:71-85.
[16] Lam SS, Wan Mahari WA, Ma NL, Azwar E, Kwon EE, Peng W, et al. Microwave pyrolysis valorization of used baby diaper. Chemosphere 2019;230:294-302.
[17] Yang SI, Hsu TC, Wu CY, Chen KH, Hsu YL, Li YH. Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines. Energy 2014;66:172-80.
[18] Lam SS, Wan Mahari WA, Ok YS, Peng W, Chong CT, Ma NL, et al. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews 2019;115:109359.
[19] María Victoria Roux, Manuel Temprado, James S. Chickos, Yatsuhisa Nagano. Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons. 1 October 2007.
[20] Zheng A, Zhao Z, Chang S, Huang Z, Wu H, Wang X, et al. Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass. Journal of Molecular Catalysis A: Chemical 2014;383-384:23-30.
[21] Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis 2011;279(2):257-68.
[22] Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 2012;38:68-94.
[23] Yek PNY, Liew RK, Osman MS, Lee CL, Chuah JH, Park Y-K, et al. Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon. Journal of Environmental Management 2019;236:245-53.
[24] Kong SH, Lam SS, Yek PNY, Liew RK, Ma NL, Osman MS, et al. Self‐purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon‐rich biochar for methylene blue adsorption. Journal of Chemical Technology & Biotechnology 2019;94(5):1397-405.
[25] Lam SS, Lee XY, Nam WL, Phang XY, Liew RK, Yek PNY, et al. Microwave vacuum pyrolysis conversion of waste mushroom substrate into biochar for use as growth medium in mushroom cultivation. Journal of Chemical Technology & Biotechnology 2019;94(5):1406-15.
[26] Cayuela ML, Sanchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J. Biochar and denitrification in soils: when, how much and why does biochar reduce N(2)O emissions? Sci Rep 2013;3:1732.
[27] Abiven S, Schmidt MWI, Lehmann J. Biochar by design. Nature Geoscience 2014;7(5):326-7.
[28] Lin B-J, Chen W-H. Sugarcane Bagasse Pyrolysis in a Carbon Dioxide Atmosphere with Conventional and Microwave-Assisted Heating. Frontiers in Energy Research 2015;3.
[29] Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DCW, et al. Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. Journal of Hazardous Materials 2019:121649.
[30] Wang C-Y, Ng C-C, Lin H-T, Shyu Y-T. Free radical-scavenging and tyrosinase-inhibiting activities of extracts from sorghum distillery residue. Journal of Bioscience and Bioengineering 2011;111(5):554-6.
[31] Su MY, Tzeng WS, Shyu YT. An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste. Bioresource Technology 2010;101(17):6669-75.
[32] Lam SS, Su MH, Nam WL, Thoo DS, Ng CM, Liew RK, et al. Microwave Pyrolysis with Steam Activation in Producing Activated Carbon for Removal of Herbicides in Agricultural Surface Water. Industrial & Engineering Chemistry Research 2019;58(2):695-703.
[33] S. Al-Suwaiegh KCF, R. J. Grant, C. T. Milton, T. J. Klopfenstein. Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle. April 2002,.
[34] J.C. Silva1 NAC, M.S. Brown1, 2, C.H. Ponce1, D.R. Smith EFFECTS OF DIETARY FAT AND WET SORGHUM DISTILLER’S GRAINS PLUS SOLUBLES ON FEEDLOT PERFORMANCE AND CARCASS CHARACTERISTICS OF FINISHING HEIFERS. 2007.
[35] F. Kissinger W, E. Massey R, K. Koelsch R, E. Erickson G. Economics of Manure Phosphorus Distribution from Beef Feeding Operations. St. Joseph, MI: ASABE; 2006.
[36] Almeida G, Brito JO, Perré P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresource Technology 2010;101(24):9778-84.
[37] Sabil KM, Aziz MA, Lal B, Uemura Y. Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement. Applied Energy 2013;111:821-6.
[38] Chen W-H, Lin B-J, Huang M-Y, Chang J-S. Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresource Technology 2015;184:314-27.
[39] Chiou B-S, Valenzuela-Medina D, Bilbao-Sainz C, Klamczynski AP, Avena-Bustillos RJ, Milczarek RR, et al. Torrefaction of almond shells: Effects of torrefaction conditions on properties of solid and condensate products. Industrial Crops and Products 2016;86:40-8.
[40] Ho S-H, Zhang C, Chen W-H, Shen Y, Chang J-S. Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresource Technology 2018;264:7-16.
[41] Chen W-H, Huang M-Y, Chang J-S, Chen C-Y. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresource Technology 2014;169:258-64.
[42] Zhang C, Ho S-H, Chen W-H, Xie Y, Liu Z, Chang J-S. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Applied Energy 2018;220:598-604.
[43] Anglès MN, Ferrando F, Farriol X, Salvadó J. Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass and Bioenergy 2001;21(3):211-24.
[44] Overend RP, Chornet EJPTRSLA. Fractionation of lignocellulosics by steam-aqueous pretreatments. 1987;321(1561):523-36.
[45] Chum HL, Johnson, D.K., Black, S.K., Overend, R.P.,. Organosolv Pretreatment for Enzymatic Hydrolysis of Poplars. 2. Catalyst Effects and the Combined Severity Parameter. Appl Biochem Biotechnol 24/25 (1–14) 1990.
[46] Lloyd TA, Wyman CE. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology 2005;96(18):1967-77.
[47] Biswas AK, Yang W, Blasiak W. Steam pretreatment of Salix to upgrade biomass fuel for wood pellet production. Fuel Processing Technology 2011;92(9):1711-7.
[48] Lee J-W, Kim Y-H, Lee S-M, Lee H-W. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresource Technology 2012;116:471-6.
[49] Rahman MM, Chai M, Sarker M, Nishu, Liu R. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: Analytical Py-GC/MS study. Journal of the Energy Institute 2020;93(1):425-35.
[50] Zhang H, Xiao R, Jin B, Shen D, Chen R, Xiao G. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts. Bioresour Technol 2013;137:82-7.
[51] Santana JA, Carvalho WS, Ataíde CH. Catalytic effect of ZSM-5 zeolite and HY-340 niobic acid on the pyrolysis of industrial kraft lignins. Industrial Crops and Products 2018;111:126-32.
[52] Carvalho WS, Cunha IF, Pereira MS, Ataíde CH. Thermal decomposition profile and product selectivity of analytical pyrolysis of sweet sorghum bagasse: Effect of addition of inorganic salts. Industrial Crops and Products 2015;74:372-80.
[53] Che Q, Yang M, Wang X, Yang Q, Rose Williams L, Yang H, et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresource Technology 2019;278:248-54.
[54] Wang L, Lei H, Ren S, Bu Q, Liang J, Wei Y, et al. Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst. Journal of Analytical and Applied Pyrolysis 2012;98:194-200.
[55] Nakanishi A, Aikawa S, Ho S-H, Chen C-Y, Chang J-S, Hasunuma T, et al. Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4. Bioresource Technology 2014;152:247-52.
[56] Medic D, Darr M, Shah A, Potter B, Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 2012;91(1):147-54.
[57] Peng JH, Bi XT, Sokhansanj S, Lim CJ. Torrefaction and densification of different species of softwood residues. Fuel 2013;111:411-21.
[58] Chen W-H, Huang M-Y, Chang J-S, Chen C-Y. Torrefaction operation and optimization of microalga residue for energy densification and utilization. Applied Energy 2015;154:622-30.
[59] Chen W-H, Lee K-T, Eng C-F, Lin H-P, Qiu Y-B, Cheng C-L, et al. A novel renewable double-E system for activated biochar production and thermoelectric generation from waste heat. Energy & Fuels 2020.
[60] Chen W-H, Wu Z-Y, Chang J-S. Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresource Technology 2014;155:245-51.
[61] Weimin Peng QW, Pingguan Tu. Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production. Journal of Applied Phycology 2001.
[62] Huang Y, Liu H, Yuan H, Zhuang X, Yuan S, Yin X, et al. Association of chemical structure and thermal degradation of lignins from crop straw and softwood. Journal of Analytical and Applied Pyrolysis 2018;134:25-34.
[63] Chen W-H, Wang C-W, Ong HC, Show PL, Hsieh T-H. Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin. Fuel 2019;258:116168.
[64] Collard F-X, Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews 2014;38:594-608.
[65] Wu H, Hu W, Zhang Y, Huang L, Zhang J, Tan S, et al. Effect of oil extraction on properties of spent coffee ground–plastic composites. Journal of Materials Science 2016;51(22):10205-14.
[66] Bach Q-V, Tran K-Q, Khalil RA, Skreiberg Ø, Seisenbaeva GJE, Fuels. Comparative assessment of wet torrefaction. 2013;27(11):6743-53.
[67] Chen W-H, Huang M-Y, Chang J-S, Chen C-Y. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresource Technology 2014;169:258--64.
[68] Chen W-H, Kuo P-C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010;35(6):2580-6.
[69] Wang S, Dai G, Ru B, Zhao Y, Wang X, Zhou J, et al. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors. Bioresource Technology 2016;218:1106-14.
[70] Chen Y, Cao W, Atreya A. An experimental study to investigate the effect of torrefaction temperature and time on pyrolysis of centimeter-scale pine wood particles. Fuel Processing Technology 2016;153:74-80.
[71] Wannapeera J, Fungtammasan B, Worasuwannarak N. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 2011;92(1):99-105.
[72] Rousset P, Aguiar C, Labbé N, Commandré J-M. Enhancing the combustible properties of bamboo by torrefaction. Bioresource Technology 2011;102(17):8225-31.
[73] Taurino R, Ferretti D, Cattani L, Bozzoli F, Bondioli F. Lightweight clay bricks manufactured by using locally available wine industry waste. Journal of Building Engineering 2019;26:100892.
[74] Kang S-H, Bae JW, Woo K-J, Sai Prasad PS, Jun K-W. ZSM-5 supported iron catalysts for Fischer–Tropsch production of light olefin. Fuel Processing Technology 2010;91(4):399-403.
[75] Groen JC, Peffer LAA, Pérez-Ramı́rez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials 2003;60(1):1-17.
[76] Chen W-H, Cheng W-Y, Lu K-M, Huang Y-P. An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy 2011;88(11):3636-44.
[77] Bertran E, Sort X, Soliva M, Trillas I. Composting winery waste: sludges and grape stalks. Bioresource Technology 2004;95(2):203-8.
[78] Szambelan K, Nowak J, Szwengiel A, Jeleń H. Comparison of sorghum and maize raw distillates: Factors affecting ethanol efficiency and volatile by-product profile. Journal of Cereal Science 2020;91.
[79] Singh J, Gu S. Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews 2010;14(9):2596-610.
[80] Nemanova V, Abedini A, Liliedahl T, Engvall K. Co-gasification of petroleum coke and biomass. Fuel 2014;117:870-5.
[81] Xiang Z, Liang J, Morgan HM, Liu Y, Mao H, Bu Q. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Bioresource Technology 2018;247:804-11.
[82] Jiao Y, Fan X, Perdjon M, Yang Z, Zhang J. Vapor-phase transport (VPT) modification of ZSM-5/SiC foam catalyst using TPAOH vapor to improve the methanol-to-propylene (MTP) reaction. Applied Catalysis A: General 2017;545:104-12.
[83] Ajit K. Mahapatra DEE, Nalini K. Pattanaik, Umakanta Jena, Archie L. Williams, Mark Latimore, Jr. Thermal properties of sweet sorghum bagasse as a function of moisture content. 2017.
[84] Yarulina I, Kapteijn F, Gascon J. The importance of heat effects in the methanol to hydrocarbons reaction over ZSM-5: on the role of mesoporosity on catalyst performance. Catalysis Science & Technology 2016;6(14):5320-5.
[85] Carlson TR, Jae J, Lin Y-C, Tompsett GA, Huber GW. Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. Journal of Catalysis 2010;270(1):110-24.
[86] Ohayon D, Le Van Mao R, Ciaravino D, Hazel H, Cochennec A, Rolland N. Methods for pore size engineering in ZSM-5 zeolite. Applied Catalysis A: General 2001;217(1):241-51.
[87] Che Q, Yang M, Wang X, Yang Q, Chen Y, Chen X, et al. Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis. Bioresource Technology 2019;289:121729.
[88] Ivanov AV, Graham GW, Shelef M. Adsorption of hydrocarbons by ZSM-5 zeolites with different SiO2/Al2O3 ratios: a combined FTIR and gravimetric study. Applied Catalysis B: Environmental 1999;21(4):243-58.
[89] Viswanadham N, Kamble R, Singh M, Kumar M, Murali Dhar G. Catalytic properties of nano-sized ZSM-5 aggregates. Catalysis Today 2009;141(1):182-6.
[90] Pattiya A, Titiloye JO, Bridgwater AV. Fast pyrolysis of cassava rhizome in the presence of catalysts. Journal of Analytical and Applied Pyrolysis 2008;81(1):72-9.
[91] Rahman MM, Liu R, Cai J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review. Fuel Processing Technology 2018;180:32-46.
[92] Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel 2008;87(12):2493-501.
[93] Williams PT, Horne PA. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis 1995;31:39-61.
[94] Mourant D, Lievens C, Gunawan R, Wang Y, Hu X, Wu L, et al. Effects of temperature on the yields and properties of bio-oil from the fast pyrolysis of mallee bark. Fuel 2013;108:400-8.
[95] Jiang S, Hu X, Xia D, Li C-Z. Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature. Applied Energy 2016;183:542-51.
[96] Huang YF, Chiueh PT, Kuan WH, Lo SL. Pyrolysis kinetics of biomass from product information. Applied Energy 2013;110:1-8.
[97] Parihar A, Sripada P, Bambery K, Garnier G, Bhattacharya S. Investigation of functional group changes in biomass during slow pyrolysis using synchrotron based infra-red microspectroscopy and thermogravimetry-infra-red spectroscopy. Journal of Analytical and Applied Pyrolysis 2017;127:394-401.
[98] Candelier K, Dibdiakova J, Volle G, Rousset P. Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysis. Thermochimica Acta 2016;644:33-42.