簡易檢索 / 詳目顯示

研究生: 簡楷訓
Chien, Kai-Hsun
論文名稱: 以Lewis–Riesenfeld不變量理論達成多模波導模態轉換之捷徑
Shortcut to Mode Conversion in Multimode Waveguides based on Lewis–Riesenfeld Invariant Theory
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 波導模態轉換
外文關鍵詞: waveguide, mode conversion
相關次數: 點閱:116下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以Lewis–Riesenfeld不變量算符逆向操縱法,成功地利用電腦模擬生成的平面全息圖在多模波導上達成模態轉換,此結構有完美的模態轉換效率。我們設計多組模態轉換路徑並加以分析比較,大幅地改善了傳統使用受激拉曼絕熱通道法的模態轉換裝置長度。除此之外,亦可改變裝置出口端的模態數目,做為光學模態分離之用途。

    We use computer-generated planar holograms based on Lewis–Riesenfeld invariant-based inverse engineering to realize mode conversion in multimode waveguides, and this structure has excellent mode conversion properties. We not only mathematically design different convertible pathes but also numerically analyze them. They improve the device length of traditional stimulated Raman adiabatic passage remarkably. Moreover, they can also change the number of modes at the outlet of the device to split the optical mode.

    摘要..................................I ABSTRACT..................................II 致謝..................................III 目錄..................................IV 圖目錄..................................VI 第一章 序論..................................1 第二章 波導基本原理..................................2 2.1 光波導的基本方程式..................................2 2.2 有效折射率法..................................6 2.3 模態耦合理論..................................9 2.3.1 同向耦合..................................13 第三章 量子系統的三能階總體轉移............................16 3.1 受激拉曼絕熱通道法..................................16 3.2 不變量算符逆向操縱法..................................21 3.3 波導光學和量子力學的相似性...............................30 第四章 模擬結果與討論 33 4.1 受激拉曼絕熱通道法的模態轉換..................................34 4.2 不變量算符逆向操縱法的模態轉換..................................38 4.2.1 路徑A..................................38 4.2.2 路徑B..................................42 4.2.3 路徑C..................................45 4.2.4 頻寬分析..................................48 4.2.4.1 不同路徑..................................48 4.2.4.2 不同裝置長度..................................49 4.3 模態轉換最短長度比較..................................50 4.4 不變量算符逆向操縱法的模態分離.............................52 4.4.1 模態一分為二..................................53 4.4.1.1 路徑A..................................54 4.4.1.2 路徑B..................................57 4.4.1.3 路徑C..................................60 4.4.2 模態一分為三..................................63 4.4.2.1 路徑A..................................63 4.4.2.2 路徑B..................................66 4.4.2.3 路徑C..................................69 第五章 結論..................................72 參考文獻..................................73 附錄..................................76 附錄 A..................................76 附錄 B..................................78 附錄 C..................................80 附錄 D..................................82

    [1] S. Berdagué and P. Facq (1982), "Mode division multiplexing in optical fibers", Appl. Opt., vol. 21, no. 11, pp. 1950-1955.

    [2] G. E. Keiser (1999), "A Review of WDM Technology and Applications", Optical Fiber Technology, vol. 5, no. 1, pp. 3-39.

    [3] J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich (2007), "Add-drop filters based on mode-conversion cavities", Opt. Lett., vol. 32, no. 10, pp. 1253-1255.

    [4] M. Greenberg and M. Orenstein (2005), "Multimode add-drop multiplexing by adiabatic linearly tapered coupling", Opt. Express, vol. 13, no. 23, pp. 9381-9387.

    [5] P. Joongwoo Brian, Y. Dong-Min, and S. Sang-Yung (2006), "Variable Optical Mode Generator in a Multimode Waveguide", Photonics Technology Letters, IEEE, vol. 18, no. 20, pp. 2084-2086.

    [6] A. Yariv (1973), "Coupled-mode theory for guided-wave optics", Quantum Electronics, IEEE Journal of, vol. 9, no. 9, pp. 919-933.

    [7] E. Paspalakis (2006), "Adiabatic three-waveguide directional coupler", Optics Communications, vol. 258, no. 1, pp. 30-34.

    [8] C.-F. Chen, Y.-S. Ku, and T.-T. Kung (2007), "Optimal design of coupling waveguide structure for adiabatic optical directional full couplers weighted by sin-square and raised-cosine functions", Optics Communications, vol. 280, no. 1, pp. 79-86.

    [9] K. Bergmann, H. Theuer, and B. W. Shore (1998), "Coherent population transfer among quantum states of atoms and molecules", Reviews of Modern Physics, vol. 70, no. 3, pp. 1003-1025.

    [10] M. Demirplak and S. A. Rice (2003), "Adiabatic Population Transfer with Control Fields", The Journal of Physical Chemistry A, vol. 107, no. 46, pp. 9937-9945.

    [11] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, et al. (2012), "High-fidelity quantum driving", Nat Phys, vol. 8, no. 2, pp. 147-152.

    [12] A. Ruschhaupt, C. Xi, D. Alonso, and J. G. Muga (2012), "Optimally robust shortcuts to population inversion in two-level quantum systems", New Journal of Physics, vol. 14, no. 9. 093040.

    [13] G. S. Vasilev, A. Kuhn, and N. V. Vitanov (2009), "Optimum pulse shapes for stimulated Raman adiabatic passage", Physical Review A, vol. 80, no. 1. 013417.

    [14] X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga (2010), "Shortcut to Adiabatic Passage in Two- and Three-Level Atoms", Physical Review Letters, vol. 105, no. 12. 123003.

    [15] M. V. Berry (2009), "Transitionless quantum driving", Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 36. 365303.

    [16] G. Dridi, S. Guérin, V. Hakobyan, H. R. Jauslin, and H. Eleuch (2009), "Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses", Physical Review A, vol. 80, no. 4. 043408.

    [17] H.-C. Liu and A. Yariv (2009), "Grating induced transparency (GIT) and the dark mode in optical waveguides", Opt. Express, vol. 17, no. 14, pp. 11710-11718.

    [18] T.-Y. Lin (2012), "Adiabatic Mode Conversion and Bandwidth Analysis Based on CGPH in Multimode Waveguide", M.S. thesis, National Cheng Kung University.

    [19] F.-C. Hsiao (2012), "Bandwidth Analysis of Waveguide Mode Converters Based on Landau-Zener Analysis of Non-adiabatic Energy Crossing", M.S. thesis, National Cheng Kung University.

    [20] X. Chen, E. Torrontegui, and J. G. Muga (2011), "Lewis-Riesenfeld invariants and transitionless quantum driving", Physical Review A, vol. 83, no. 6. 062116.

    [21] O. Katsunari (2006), "Fundamentals of Optical Waveguides", (2sec ed), AMSETERDAM, Elsevier Inc.

    [22] A. Yariv (2007), "Photonics Optical Electronics in modern", (6sixth ed), Auckland, Oxford University Press, Inc.

    [23] U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann (1990), "Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results", The Journal of Chemical Physics, vol. 92, no. 9, pp. 5363-5376.

    [24] H. R. Lewis (1969), "An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field", Journal of Mathematical Physics, vol. 10, no. 8. 1458.

    [25] C. E. Carroll and F. T. Hioe (1988), "Three-state systems driven by resonant optical pulses of different shapes", J. Opt. Soc. Am. B, vol. 5, no. 6, pp. 1335-1340.

    [26] S.-Y. Tseng, Y. Kim, C. J. K. Richardson, and J. Goldhar (2006), "Implementation of discrete unitary transformations by multimode waveguide holograms", Appl. Opt., vol. 45, no. 20, pp. 4864-4872.

    [27] T. K. K. Kawano (2001), "Introduction to optical waveguide analysis solving", New York, JOHN WILEY & SONS, Inc.

    下載圖示 校內:2018-07-25公開
    校外:2018-07-25公開
    QR CODE