簡易檢索 / 詳目顯示

研究生: 彭俊業
Pang, Chun-Yip
論文名稱: 利用第三型纖維黏蛋白的第九個及第十個模組片段設計對整合蛋白α5β1具有專一性的拮抗劑
Design of Integrin α5β1-Specific Antagonist Using the Ninth and Tenth Module of Fibronectin Type III Domain
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 104
中文關鍵詞: 多價整合蛋白α5β1維黏蛋白的第三型區域中第九和第十個模組
外文關鍵詞: Multivalent, Integrin α5β1, Ninth and Tenth Modules of Fibronectin Type III Domain
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 整合蛋白α5β1是纖維黏蛋白 (簡稱Fn) 的主要受體,活化後的整合蛋白α5β1能夠調控許多細胞的行為,例如凝血 (blood cloting)、傷口癒合 (wound healing) 以及組織修復 (tissue repair) 等功能。有研究指出,阻擋整合蛋白α5β1活化,能夠有效抑制VEGF所誘導的血管新生,進一步抑制腫瘤生長。而在本研究中,我們使用維黏蛋白的第三型區域中第九和第十個模組 (9,10Fn3) 作為鷹架蛋白進行藥物的設計。9,10Fn3能和整合蛋白α5β1結合,在10Fn3上的RGD motif和9Fn3上的PHSRN motif協同區域 (synergy site) 共同參與能夠讓結合更為緊密,因此我們希望研究協同區域如何影響與整合蛋白α5β1之間的結合。在實驗室先前的研究中,使用9,10Fn3當作鷹架蛋白成功設計出對整合蛋白α5β1有專一性結合的拮抗劑9,10Fn3LPCRA,IC50為65.0 nM。同時也已經証明了其能夠有效的抑制血管內皮細胞的存活、增值、遷移和管狀形成,並且在小鼠的動物模型中,能有效的抑制腫瘤生長。為了進一步改善9,10Fn3LPCRA對整合蛋白α5β1抑制能力,我們透過定點突變 (site directed mutagenesis) 方式研究9Fn3上的1376PHSRN motif,希望增加9,10Fn3LPCRA對整合蛋白α5β1之親和力。目前已經成功透過E. coli系統表現及純化27種突變蛋白以及兩種多價蛋白。由細胞黏著的實驗結果中顯示,P1376D和R1379E突變蛋白對整合蛋白α5β1辨識能力下降接近9倍和781倍左右,先前文獻也曾指出R1379之正電荷胺基酸為辨識α5β1的關鍵,而我們認為負電荷胺基酸並不適合存在於1376PHSRN motif中。當突變1376PHSRN motif為KHSRN和KKKRT時,對整合蛋白α5β1辨識能力下降2.7倍和1.7倍。透過molecular docking 實驗,我們解釋有可能位置1376為正電荷胺基酸時,會使R1379和α5次單元上的D154鹽橋變得不穩定。此外,我們發現S1378K系列的突變蛋白對整合蛋白α5β1辨識能力上升約2到3倍左右。我們從結果中發現若位置1377和1378為正電荷胺基酸時,能大幅增加對整合蛋白α5β1的結合親和力。最後,我們突變1376PHSRN motif為YKKRN序列,發現其對整合蛋白α5β1辨識能力為最高,IC50為22.8 nM。另外一方面,我們所設計的多價蛋白9,10Fn3-9,10Fn3對整合蛋白α5β1親和力上升接迎7倍,因此我們認為多價設計能夠大幅增加整合蛋白抑制劑與整合蛋白之結合能力。本次研究將可作為對α5β1設計拮抗劑的基礎。

    Integrin α5β1 is a fibronectin receptor that regulates complex biological cell behavior, such as differentiation, development, wound healing, and tumor progression. Many studies showed that the blockade of integrin α5β1 inhibited VEGF-induced angiogenesis, leading to the inhibition of tumor growth or tumor regression. In this study we used the ninth and tenth module of fibronectin type III domain (9,10Fn3) as the protein scaffold to study the effect of 1376Pro-His-Ser-Arg-Asn (PHSRN) motif, the synergy site, on its integrin α5β1 binding affinity. In our previous study we have successfully designed an integrin α5β1-specific antagonist, 910LPCRA, with the IC50 value of 65.0 nM. We now used site-directed mutagenesis to engineer the synergy site of 910LPCRA to improve its activity in inhibiting integrin α5β1. In this study I have successfully expressed and purified twenty-nine 9.10Fn3 mutants in E. coli to homogeneity. According to the results of cell adhesion assay, DHSRN and PHSEN mutants exhibited 9- and >781- fold decreases in the inhibition of integrin α5β1.The mutation of 1376PHSRN into 1376KHSRN and 1376KKKRT caused 2.9- and 1.8-fold decreases in their activity. This was consistent with the result of molecular docking experiment that a positively charged residue in the1376 position destabilized the salt bridge interaction between R1379 and D154 of integrin α5 subunit. We also found that S1378K mutants exhibited 2-3-fold increase in the inhibition of integrin α5β1. These results showed that the 1377 and 1378 positions with positively charge amino acid residues in the synergy site can increase its integrin α5β1 binding affinity. In particular, the 1376YKKRN mutant exhibited highest inhibitory activity with the IC50 value of 22.8 nM. We also found that the dimeric 910LPCRA (9,10Fn3-9,10Fn3) mutant exhibited 7-fold increase in inhibiting integrin α5β1 with the IC50 value of 9.8 nM. The results of this study will serve as the basis for the design of integrin α5β1-specific antagonist.

    摘要 I 英文延伸摘要 III 致謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 附錄目錄 XIII 縮寫檢索表 XIV 儀器 XV 第1章 緒論 1 1-1 背景資料 1 1-2 整合蛋白 (Integrin) 的介紹 1 1-2-1整合蛋白之結構 2 1-2-2整合蛋白α5β1的介紹 4 1-2-3整合蛋白α5β1在癌細胞大量表現 4 1-2-4整合蛋白α5β1在血管新生中的重要性 5 1-2-5脈絡膜血管新生與整合蛋白α5β1之關聯 5 1-3 整合蛋白之拮抗劑 6 1-3-1 去整合蛋白 (Disintegrin) 6 1-3-2 整合蛋白之抗體 (Antibodies) 7 1-3-2 生肽類整合蛋白拮抗劑 7 1-3-3 小分子整合蛋白拮抗劑 7 1-3-4選擇纖維黏蛋白作為整合蛋白拮抗劑 8 1-4纖維黏蛋白 (Fibronectin) 的介紹 8 1-4-1 纖維黏蛋白的第三型區域中第九和第十個模組 9 1-4-2 9Fn3中的協同區域之介紹 11 第2章 研究目標與策略 12 第3章 材料與方法 15 3-1 9,10Fn3重組蛋白的製備 15 3-1-1 實驗用菌株、質體和培養液配方 15 3-1-2 重組基因之建構 16 3-1-3 重組蛋白的表現與純化 20 3-1-4 重組蛋白之質譜鑑定 26 3-2 細胞株及培養方法 27 3-3 9-10Fn3重組蛋白抑制整合蛋白α5β1和纖維黏蛋白結合之研究 29 3-3-1 ECM Fibronectin之製備 31 第4章 結果 35 4-1 9-10Fn3重組蛋白已成功製備與鑑定 35 4-2 9-10Fn3重組蛋白可有效抑制整合蛋白α5β1和纖維黏蛋白 36 4-2-1找出細胞黏著實驗條件的間質濃度 37 4-2-2透過序列比對不同模組的Fn3 之DE loop所設計之突變蛋白對整合蛋白α5β1黏著的影響 38 4-2-3使用Molecular docking方式優化協同區域與整合蛋白結合之親和力所設計之突變蛋白對整合蛋白α5β1黏著的影響 38 4-2-4 探討第九個模組中有可能與α5 sbunit形成鍵結之位置進行突變 39 4-2-5 以1376KKKRT作為探討之對象突變協同區域 39 4-2-6多價抑制劑設計之突變蛋白可大幅增進對整合蛋白α5β1的黏著 40 第5章 討論 41 5-1 透過序列比對Fn3 DE loop所設計之突變蛋白對整合蛋白α5β1的抑制效果 41 5-2 使用分子模擬接合方式探討協同區域與α5β1結合之親和力 42 5-2-1正電荷胺基酸存在1376PHSRN motif中的特殊條件 43 5-2-2對PKKRN mutant之延伸探討 44 5-3 多價蛋白對整合蛋白α5β1黏著的抑制設計理念 44 5-3-1 多價Fn3蛋白對整合蛋白α5β1結合顯著上升 45 5-3-2 多價蛋白設計與突變重組蛋白之合併應用 46 5-4針對PHSRN motif的研究有利於α5β1抑制劑和促效劑之發展 46 5-4-1 整合蛋白α5β1促效劑在藥物市場中的價值 47 5-5未來展望 47 第6章 結論 49 參考文獻 51 附 錄 86

    Adachi, M., Taki, T., Higashiyama, M., Kohno, N., Inufusa, H., and Miyake, M. (2000). Significance of integrin alpha5 gene expression as a prognostic factor in node-negative non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 6, 96-101.

    Aota, S., Nomizu, M., and Yamada, K.M. (1994). The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. The Journal of biological chemistry 269, 24756-24761.

    Avraamides, C.J., Garmy-Susini, B., and Varner, J.A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nature reviews Cancer 8, 604-617.

    Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Integrins. Cell and tissue research 339, 269-280.

    Bell-McGuinn, K.M., Matthews, C.M., Ho, S.N., Barve, M., Gilbert, L., Penson, R.T., Lengyel, E., Palaparthy, R., Gilder, K., Vassos, A., et al. (2011). A phase II, single-arm study of the anti-alpha5beta1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecologic oncology 121, 273-279.

    Bloom, L., and Calabro, V. (2009). FN3: a new protein scaffold reaches the clinic. Drug discovery today 14, 949-955.

    Bork, P., and Doolittle, R.F. (1992). Proposed acquisition of an animal protein domain by bacteria. Proceedings of the National Academy of Sciences of the United States of America 89, 8990-8994.

    Calvete, J.J. (2005). Structure-function correlations of snake venom disintegrins. Current pharmaceutical design 11, 829-835.

    Campbell, I.D., and Spitzfaden, C. (1994). Building proteins with fibronectin type III modules. Structure (London, England : 1993) 2, 333-337.

    Campochiaro, P.A. (2006). Suppression and regression of choroidal neovascularization by systemic administration of an alpha5beta1 integrin antagonist. Molecular pharmacology 69, 1820-1828.

    Carbonell, W.S., DeLay, M., Jahangiri, A., Park, C.C., and Aghi, M.K. (2013). beta1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma. Cancer research 73, 3145-3154.

    Chang, Y.S. (2013). Design, structure detrmination, and biological evalation of potent integrin alpha5beta1 and/or alphavbeta3-specific antagonist usin the ninth and/or tenth module of fibronectin type III domain. Tainan, National Cheng Kung University.

    Chen, S.-C. (2014). Development of dual VEGFR2- and integrin α5β1-specific antagonist using the fibronectin type III domain. Tainan, National Cheng Kung University.

    Collo, G., and Pepper, M.S. (1999). Endothelial cell integrin alpha5beta1 expression is modulated by cytokines and during migration in vitro. Journal of cell science 112 ( Pt 4), 569-578.

    Daculsi, G., Pilet, P., Cottrel, M., and Guicheux, G. (1999). Role of fibronectin during biological apatite crystal nucleation: ultrastructural characterization. Journal of biomedical materials research 47, 228-233.

    Desgrosellier, J.S., and Cheresh, D.A. (2010). Integrins in cancer: biological
    implications and therapeutic opportunities. Nature reviews Cancer 10, 9-22.

    Dickinson, C.D., Veerapandian, B., Dai, X.P., Hamlin, R.C., Xuong, N.H., Ruoslahti, E., and Ely, K.R. (1994). Crystal structure of the tenth type III cell adhesion module of human fibronectin. Journal of molecular biology 236, 1079-1092.

    Feng, Y., and Mrksich, M. (2004). The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry 43, 15811-15821.

    Frank, J.D., Gould, R.J., Schaffer, L.W., Davidson, J.T., Gibson, R.E., Patrick, D.H., Vonderfecht, S.L., and Cartwright, M.E. (1992). Immunocytochemical localization of platelets in baboon hepatic sinusoids using monoclonal mouse anti-human platelet glycoprotein IIIa following induction of thrombocytopenia. Histochemistry 97, 355-360.

    Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., and Niewiarowski, S. (1990). Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 195, 168-171.

    Harpaz, Y., and Chothia, C. (1994). Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. Journal of molecular biology 238, 528-539.

    Hashiba, K., Sano, M., Nio-Kobayashi, J., Hojo, T., Skarzynski, D.J., and Okuda, K. (2014). Galectin-3 contributes to luteolysis by binding to Beta 1 integrin in the bovine corpus luteum. Biology of reproduction 91, 2.

    Ho SN, H.H., Horton RM, Pullen JK, Pease LR. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59.

    Humphries, J.D., Byron, A., and Humphries, M.J. (2006). Integrin ligands at a glance. Journal of cell science 119, 3901-3903.

    Humphries, M.J. (2001). Cell-substrate adhesion assays. Current protocols in cell biology / editorial board, Juan S Bonifacino [et al] Chapter 9, Unit 9 1.

    Hynes, R.O. (1987). Integrins: a family of cell surface receptors. Cell 48, 549-554.

    Jencks, W.P. (1981). On the attribution and additivity of binding energies. Proceedings of the National Academy of Sciences of the United States of America 78, 4046-4050.

    Johansson, S., Svineng, G., Wennerberg, K., Armulik, A., and Lohikangas, L. (1997). Fibronectin-integrin interactions. Frontiers in bioscience : a journal and virtual library 2, d126-146.

    Kawakami, K., Tatsumi, H., and Sokabe, M. (2001). Dynamics of integrin clustering at focal contacts of endothelial cells studied by multimode imaging microscopy. Journal of cell science 114, 3125-3135.
    Kiessling, L.L., Gestwicki, J.E., and Strong, L.E. (2000). Synthetic multivalent ligands in the exploration of cell-surface interactions. Current opinion in chemical biology 4, 696-703.

    Kim, J.W., Cochran, F.V., and Cochran, J.R. (2015). A chemically cross-linked knottin dimer binds integrins with picomolar affinity and inhibits tumor cell migration and proliferation. Journal of the American Chemical Society 137, 6-9.

    Kim, S., Bell, K., Mousa, S.A., and Varner, J.A. (2000). Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. The American journal of pathology 156, 1345-1362.

    Kinashi, T. (2005). Intracellular signalling controlling integrin activation in lymphocytes. Nature reviews Immunology 5, 546-559.

    Koide, A., Bailey, C.W., Huang, X., and Koide, S. (1998). The fibronectin type III domain as a scaffold for novel binding proteins. Journal of molecular biology 284, 1141-1151.

    Lee, J.O., Rieu, P., Arnaout, M.A., and Liddington, R. (1995). Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638.
    Lipovsek, D. (2011). Adnectins: engineered target-binding protein therapeutics. Protein engineering, design & selection : PEDS 24, 3-9.

    Luo, B.H., Carman, C.V., and Springer, T.A. (2007). Structural basis of integrin regulation and signaling. Annual review of immunology 25, 619-647.

    Mac Gabhann, F., and Popel, A.S. (2007). Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophysical chemistry 128, 125-139.

    Mamluk, R., Carvajal, I.M., Morse, B.A., Wong, H., Abramowitz, J., Aslanian, S., Lim, A.C., Gokemeijer, J., Storek, M.J., Lee, J., et al. (2010). Anti-tumor effect of CT-322 as an adnectin inhibitor of vascular endothelial growth factor receptor-2. mAbs 2, 199-208.

    Mammen, M., Choi, S.-K., and Whitesides, G.M. (1998). Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angewandte Chemie International Edition 37, 2754-2794.

    Markowska, A.I., Liu, F.T., and Panjwani, N. (2010). Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. The Journal of experimental medicine 207, 1981-1993.

    Mas-Moruno, C., Rechenmacher, F., and Kessler, H. (2010). Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anti-cancer agents in medicinal chemistry 10, 753-768.

    Mattern, R.H., Read, S.B., Pierschbacher, M.D., Sze, C.I., Eliceiri, B.P., and Kruse, C.A. (2005). Glioma cell integrin expression and their interactions with integrin antagonists: Research Article. Cancer therapy 3a, 325-340.

    Nagae, M., Re, S., Mihara, E., Nogi, T., Sugita, Y., and Takagi, J. (2012). Crystal structure of alpha5beta1 integrin ectodomain: atomic details of the fibronectin receptor. The Journal of cell biology 197, 131-140.

    Nakaoka, R., Hirano, Y., Mooney, D.J., Tsuchiya, T., and Matsuoka, A. (2013). Study on the potential of RGD- and PHSRN-modified alginates as artificial extracellular matrices for engineering bone. Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs 16, 284-293.

    Niu, G., and Chen, X. (2011). Why integrin as a primary target for imaging and therapy. Theranostics 1, 30-47.

    Pimton, P., Sarkar, S., Sheth, N., Perets, A., Marcinkiewicz, C., Lazarovici, P., and Lelkes, P.I. (2011). Fibronectin-mediated upregulation of alpha5beta1 integrin and cell adhesion during differentiation of mouse embryonic stem cells. Cell adhesion & migration 5, 73-82.

    Reardon, D.A., and Cheresh, D. (2011). Cilengitide: a prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies. Genes & cancer 2, 1159-1165.

    Reddig, P.J., and Juliano, R.L. (2005). Clinging to life: cell to matrix adhesion and cell survival. Cancer metastasis reviews 24, 425-439.
    Redick, S.D., Settles, D.L., Briscoe, G., and Erickson, H.P. (2000). Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis. The Journal of cell biology 149, 521-527.

    Roca-Cusachs, P., Gauthier, N.C., Del Rio, A., and Sheetz, M.P. (2009). Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America 106, 16245-16250.

    Roy, D.C., Mooney, N.A., Raeman, C.H., Dalecki, D., and Hocking, D.C. (2013). Fibronectin matrix mimetics promote full-thickness wound repair in diabetic mice. Tissue engineering Part A 19, 2517-2526.

    Sawada, K., Mitra, A.K., Radjabi, A.R., Bhaskar, V., Kistner, E.O., Tretiakova, M., Jagadeeswaran, S., Montag, A., Becker, A., Kenny, H.A., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer research 68, 2329-2339.

    Schagger, H., Aquila, H., and Von Jagow, G. (1988). Coomassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. Analytical biochemistry 173, 201-205.

    Shimaoka, M., and Springer, T.A. (2003). Therapeutic antagonists and conformational regulation of integrin function. Nature reviews Drug discovery 2, 703-716.

    Singh, P., Carraher, C., and Schwarzbauer, J.E. (2010). Assembly of fibronectin extracellular matrix. Annual review of cell and developmental biology 26, 397-419.

    Springer, T.A., and Wang, J.H. (2004). The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion. Advances in protein chemistry 68, 29-63.

    Sumathipala, R., Xu, C., Seago, J., Mould, A.P., Humphries, M.J., Craig, S.E., Patel, Y., Wijelath, E.S., Sobel, M., and Rahman, S. (2006). The "linker" region (amino acids 38-47) of the disintegrin elegantin is a novel inhibitory domain of integrin alpha5beta1-dependent cell adhesion on fibronectin: evidence for the negative regulation of fibronectin synergy site biological activity. The Journal of biological chemistry 281, 37686-37696.

    Takagi, J. (2007). Structural basis for ligand recognition by integrins. Current opinion in cell biology 19, 557-564.

    Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46, 271-282.

    Tamkun, J.W., and Hynes, R.O. (1983). Plasma fibronectin is synthesized and secreted by hepatocytes. J Biol Chem 258, 4641-4647.

    To, W.S., and Midwood, K.S. (2011). Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis & tissue repair 4, 21.
    Umeda, N., Kachi, S., Akiyama, H., Zahn, G., Vossmeyer, D., Stragies, R., and

    Wang, W., Wang, F., Lu, F., Xu, S., Hu, W., Huang, J., Gu, Q., and Sun, X. (2011). The antiangiogenic effects of integrin alpha5beta1 inhibitor (ATN-161) in vitro and in vivo. Investigative ophthalmology & visual science 52, 7213-7220.

    Wozniak, M.A., Modzelewska, K., Kwong, L., and Keely, P.J. (2004). Focal adhesion regulation of cell behavior. Biochimica et biophysica acta 1692, 103-119.
    Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., and Arnaout, M.A. (2001). Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science (New York, NY) 294, 339-345.

    Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science (New York, NY) 296, 151-155.

    Xu, C.S., and Rahman, S. (2001). Identification by Site-directed Mutagenesis of Amino Acid Residues Flanking RGD Motifs of Snake Venom Disintegrins for Their Structure and Function. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica 33, 153-157.

    Zahn, G., Vossmeyer, D., Stragies, R., Wills, M., Wong, C.G., Loffler, K.U., Adamis, A.P., and Knolle, J. (2009). Preclinical evaluation of the novel small-molecule integrin alpha5beta1 inhibitor JSM6427 in monkey and rabbit models of choroidal neovascularization. Archives of ophthalmology (Chicago, Ill : 1960) 127, 1329-1335.

    Zhu, J., Wang, Y.S., Zhang, J., Zhao, W., Yang, X.M., Li, X., Jiang, T.S., and Yao, L.B. (2009). Focal adhesion kinase signaling pathway participates in the formation of choroidal neovascularization and regulates the proliferation and migration of choroidal microvascular endothelial cells by acting through HIF-1 and VEGF expression in RPE cells. Experimental eye research 88, 910-918.

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE