簡易檢索 / 詳目顯示

研究生: 顏群哲
Yan, Cyun-Jhe
論文名稱: 開發膠體顯影技術以製作可調間距陣列圖案
Pitch-adjustable Arrayed Patterns by Colloidal lithography
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: 膠體顯影法金屬輔助化學蝕刻法電子束蒸鍍法可調間距陣列圖案
外文關鍵詞: colloidal lithography, metal-assisted chemical etching, E-beam evaporation, Pitch-adjustable arrayed patterns
相關次數: 點閱:89下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究結合膠體顯影與金屬輔助化學蝕刻技術製作可調間距陣列圖案,目的是要開發一具次微米/奈米級且寬間距(>1μm)的陣列圖案。利用自組裝的原理,將PMSQ(polymethylsilsesquioxane)微米球分散在空氣-水介面,接著讓這些微米球排列在已塗佈高分子的矽基板上,加熱至高分子熔點(Tm),目的是讓PMSQ沉入高分子中; 移除掉PMSQ球後,便以乾蝕刻小心地去除原先球底部殘留的高分子層,在適當的乾蝕刻參數下,可得到各種不同大小所暴露出矽基板的圓形陣列圖案,然後再用金屬輔助化學蝕刻法進行非等向性蝕刻所暴露出的矽基板。另外,以電子束蒸鍍法沉積金屬於基板上後,再以丙酮洗去高分子,留在洞內的金屬便可成為乾蝕刻的光罩,在適當的乾蝕刻參數下,可調間距陣列圖案便可得到。目前已成功開發大面積(>10cm)和可調間距(非緊密排列)陣列圖案,此技術有很大的應用潛力於光電元件、顯示器、發光二極體與太陽能電池等。

    This research describes a novel technique for fabricating pitch-adjustable arrayed patterns on silicon substrate using colloidal lithography process assisted with metal-assisted chemical etching. Large-area PMSQ (polymethylsilsesquioxane) sphere arrays were first obtained at the air-water interface, and then adsorbed onto a substrate coated with a layer of polymer adhesive. Heating was further used to sink PMSQ spheres into the adhesive. After removing the PMSQ spheres and employing reactive ion etching (RIE) to carefully control the etching of the residual film, we could vary the sizes of the circular patterns of exposed silicon surface in arrays. Metal-assisted chemical etching process was further employed to selectively etch only the exposed silicon surface. We have established a strategy to successfully prepare the pitch-adjustable (non-closest-packing) arrayed patterns in large area (>10 cm). The method developed here has large application potentials in optical devices, displays, light-emitting diodes, solar cells, etc…

    目錄 中文摘要...............................................I 英文延伸摘要...........................................II 致謝.................................................VII 目錄.................................................VIII 表目錄................................................XI 圖目錄...............................................XII 第一章 緒論...........................................1 1-1研究動機...........................................1 1-2論文編排...........................................2 第二章 理論基礎與文獻回顧................................3 2-1 膠體顯影法簡介.....................................3 2-1-1 自組裝排列機制...............................3 2-1-2 自組裝排列方式...............................4 2-1-3 相關自組裝圖案應用............................8 2-2蝕刻技術..........................................13 2-2-1 乾蝕刻(反應性離子蝕刻)介紹.....................13 2-2-2 濕蝕刻(金屬輔助化學蝕刻法)介紹.................18 2-3 壓印技術簡介......................................23 2-3-1 熱壓印成形壓印技術...........................23 2-3-2軟微影技術...................................25 2-3-3逆式壓印技術..................................26 第三章 實驗方法與步驟...................................27 3-1 實驗流程..........................................27 3-2 實驗儀器設備.......................................28 3-3 實驗藥品器材.......................................31 3-4 實驗步驟..........................................32 3-4-1製備自組裝微米球..............................32 3-4-2高分子圖案製作...............................32 3-4-3氧電漿去除殘留層..............................33 3-4-4濕蝕刻(金屬輔助化學蝕刻).......................33 3-4-5反應性離子蝕刻...............................33 3-5 實驗分析與鑑定....................................34 第四章 結果與討論......................................37 4-1高分子膜厚對圖案的影響...............................38 4-2加熱時間對高分子圖案影響.............................40 4-3氧電漿處理的影響...................................42 4-3-1不同電漿瓦數與時間的分析........................42 4-4 金屬化學輔助蝕刻法處理的影響........................44 4-4-1 AgNO3/HF濕蝕刻分析..........................46 4-5 反應性離子蝕刻的影響...............................49 4-5-1 不同氣體組成的分析............................49 4-5-2 不同工作壓力的分析.............................53 4-5-3 不同蝕刻時間的分析............................54 4-5-4 小結.......................................54 4-6相關應用..........................................55 4-7未來實驗規劃......................................59 第五章 結論..........................................62 參考文獻.............................................64 表目錄 表4-1 各種高分子特性...................................39 表4-2 旋轉塗佈PMMA高分子參數............................39 表4-3 不同氧電漿瓦數與時間結果...........................43 表4-4 以SF6或SF6/O2蝕刻矽的產物.........................51 圖目錄 圖2-1 自組裝的過程.....................................4 圖2-2 各種自組裝排列方法 (a) 浸塗法 (b)旋轉塗佈法(c)空氣-水介 面法...............................................4 圖2-3 42nm聚苯乙烯球自組裝結果..........................5 圖2-4 銀金屬規則陣列...................................6 圖2-5 自組裝排列過程...................................7 圖2-6 (a)未表面處理;以(b)丁醇(c)癸醇(d)十二醇進行表面處理過的二 氧化矽奈米球........................................8 圖2-7 奈米柱製作的實驗流程..............................8 圖2-8 矽奈米柱製作.....................................9 圖2-9 製作模具與壓印實驗流程.............................10 圖2-10 (a)模具(b)高分子圖案的SEM圖......................10 圖2-11 奈米環形圖案製作.................................11 圖2-12 環形結構形成機制-高分子厚度小於球直徑................12 圖2-13 環形結構形成機制-高分子厚度等於球直徑................12 圖2-14 反應離子蝕刻機制.................................14 圖2-15 RF功率對Ф值影響.................................16 圖2-16 腔體壓力對Ф值影響................................16 圖2-17 氣體比例對Ф值影響................................17 圖2-18 Black silicon.................................17 圖2-19 濕蝕刻反應......................................18 圖2-20 蝕刻機制圖......................................19 圖2-21 以Ni2+溶液與氫氟酸蝕刻圖案(a)(b)以Ni2+ 0.08M的微米柱圖案(c)以Ni2+ 0.15M 的火山口圖案...............................20 圖2-22 (a)(b)P/N接面矽奈米線陣列(c)樹枝狀的銀金屬..........21 圖2-23 蝕刻圖形與溶液濃度比例............................22 圖2-24 ○代表無NaOH處理,■代表已NaOH處理(NaOH用來溶解多孔矽結構)..................................................22 圖2-25 奈米壓印實驗流程.................................24 圖2-26 (a)直徑25nm,間距120nm的球形圖案(b)寬30nm,間距70nm的線條圖案...................................................24 圖2-27 大面積壓印圖案..................................24 圖2-28 軟壓印流程圖....................................25 圖2-29 (a)PDMS滾筒模具(b) 3 inches大小的圖案............25 圖2-30 逆式轉印圖案....................................26 圖2-31 溫度與Rmax的關係................................26 圖3-1 反應電漿處理及蝕刻系統(紅框內)......................28 圖3-2 高溫壓印機系統...................................30 圖3-3 表面輪廓粗度儀...................................35 圖3-4 紫外光/可見光光譜儀..............................36 圖4-1 非緊密排列陣列製作...............................37 圖4-2 (a)光學顯微鏡下,自組裝PMSQ球(b)PMSQ球在高分子層上的SEM圖..40 圖4-3 加熱下沉後的高分子圖案(a)PMMA厚度493nm (b)PMMA厚度1050nm ....................................................40 圖4-4 在光學顯微鏡下,不同加熱時間的高分子圖案..............41 圖4-5 不同加熱時間的高分子圖案的SEM圖.....................41 圖4-6 氧電漿處理,不相連暴露出矽基板的圓形陣列圖.............42 圖4-7 蝕刻過頭的圖案....................................42 圖4-8 固定時間20s,不同電漿瓦數的結果......................43 圖4-9 固定瓦數50W,不同蝕刻時間的結果......................43 圖4-10 以電子束蒸鍍機鍍上100nm銀金屬的SEM圖................44 圖4-11 光學顯微鏡下,破碎的銀金屬點........................44 圖4-12 矽奈米線製作流程...................................46 圖4-13不同大小矽圓形圖案,以AgNO3/HF-0.04M/4.6M蝕刻時間5s....47 圖4-14 不同AgNO3濃度(a)0.04M(b)0.4M(c)1M蝕刻後的結果。(d)為膠帶去除銀金屬................................................48 圖4-15 以電子束蒸鍍機蒸鍍(a)80nm銀金屬(b)移除高分子後,銀金屬留在洞內的SEM圖................................................48 圖4-16 以SF6/Ar蝕刻後圖案................................50 圖4-17 以SF6/CF4/Ar 蝕刻後圖案...........................50 圖4-18 以SF6/O2/Ar蝕刻後圖案.............................51 圖4-19 氬氣加入的影響.....................................52 圖4-20 不同工作壓力影響...................................53 圖4-21 不同蝕刻時間影響...................................54 圖4-22以4μm PMSQ球,製作不同圖案大小(a)1.6μm (b)1μm (c) 0.5μm .......................................................55 圖4-23以9μm PMSQ球,製作不同圖案大小(a)5μm (b)3μm (c) 1.5μm..55 圖4-24 蓮花效應..........................................56 圖4-25 液體與固體的接觸角..................................56 圖4-26 製作抗指紋膜流程...................................57 圖4-27 間距4μm,不同圖案大小(a)1μm(b)1.6μm.................57 圖4-28 間距9μm,不同圖案大小(a)1.5μm(b)3μm (c)5μm..........57 圖4-29 (a)矽基板(平)(b)具圖案化矽基板.......................58 圖4-30 鍍完銀金屬的SEM圖(已移除高分子).......................59 圖4-31 修改後的製程.......................................60 圖4-32 PDMS模具.........................................61 圖4-33 壓印後的圖案......................................61 圖4-34 銀金屬點陣列......................................61

    [1] W. Waido, "Techniques and Tools for Optical Lithography" in Handbook of VLSI Microlithography Principles, Technology and Applications,edited by W.B. Glendinning and J. N. Helbert,Noyes Publications (1991).
    [2] C. H. Ting, M. Hatzakis, and R. A. Leone, "Fabrication of Microelectronic Devices with Electron-Beam Lithography," Journal of Vacuum Science & Technology 12 (6), 1304-1304 (1975).
    [3] H. Ahmed, "Electron-Beam Lithography for Microcircuit Fabrication," Electronics and Power 22 (7), 433-436 (1976).
    [4] N. D. Denkov. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir ,8,3183-3190(1992).
    [5] R. Micheletto, H. Fukuda, and M. Ohtsu,“A Simple Method for the Production of a Two-Dimensional Ordered Array of Small Latex Particles”, Langmuir , 11, 3333-3336(1995).
    [6] S. Rakers, L. F. Chi, and H. Fuchs, “Influence of the Evaporation Rate on the Packing Order of Polydisperse Latex Monofilms”, Langmuir, 13, 7121 – 7124(1997).
    [7] John C. Hulteen and Richard P. Van Duyne,“Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces“, J. Vac. Sci. Technol. A, 13,3,1553-1558(1995).
    [8] M. Kondo, K. Shinozaki, L. Bergstrom, N. Mizutani, “Preparation of Colloidal Monolayers of Alkoxylated Silica Particles at the Air-Liquid Interface ”, Langmuir, 11, 394( 1995).
    [9] J. Rybczynski, U. Ebels, M. Giersig,“Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 219 , 1-6(2003).
    [10] Seung-Man Yang, Se Gyu Jang, Dae-Geun Choi, Sarah Kim, and HyungKyun Yu,“Nanomachining by Colloidal Lithography”, small, 2, No. 4, 458 – 475(2006).
    [11] C. L. Cheung, R. J. Nikoli´c, C. E. Reinhardt and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography”, Nanotechnology, 17,1339–1343(2006).
    [12] Benzhong Wang, Wei Zhao, Ao Chen, Soo-Jin Chua,“ChuaFormation of nanoimprinting mould through use of nanosphere lithography”,Journal of Crystal Growth, 288, 200–204(2006).
    [13] Difu Zhu, He Huang, Gang Zhang, Xun Zhang, Xiao Li, Xuemin Zhang, Tieqiang Wang, and Bai Yang,“Fabrication of Heterogeneous Double-Ring-Like Structure Arrays by Combination of Colloidal Lithography and Controllable Dewetting”, Langmuir, 28(5),2873–2880(2012).
    [14] 陳秀春,“SF6-O2氣體的非等向性矽蝕刻技術, 光學工程, 第八十三期,73-78(2003).
    [15] V. Ovchinnikov*, A. Malinin, S. Novikov, C. Tuovinen,“Fabrication of silicon nanopillars using self-organized gold–chromium mask”, Materials Science and Engineering, B69–70, 459–463 (2000).
    [16] Daniel. L. Flamm,“Mechanisms of silicon etching in fluorine- and chlorine-containing plasmas”, Pure & Appl. Chem., Vol. 62, No. 9, pp. 1709-1720(1990).
    [17] Ut-Binh T. Giang, Dooyoung Lee, Michael R. King and Lisa A. DeLouise,“Microfabrication of cavities in polydimethylsiloxane using DRIE silicon molds”, Lab Chip,7, 1660–1662(2007).
    [18] Mark Kiehlbauch, Eray S. Aydil, Sergi Gomez and Rodolfo Jun Belen,“Etching of high aspect ratio structures in Si using SF6/O2 plasma”, J. Vac. Sci. Technol. A, 22(3), 606-615(2004).
    [19] T. Wells, M. M. El-Gomati, and J. Wood,“Low temperature
    reactive ion etching of silicon with SF6/O2 plasmas”, J. Vac. Sci. Technol. B 15(2), 434-438(1997).
    [20] R. F. Figueroa, S. Spiesshoefer, S. L. Burkett, and L. Schaper,“Control of sidewall slope in silicon vias using SF6/O2 plasma etching in a conventional reactive ion etching tool”, J. Vac. Sci. Technol. B 23, 2226 (2005)
    [21] Y. Xu, H.-B. Sun, J.-Y. Ye, S. Matsuo, H. Misawa,
    “Two-Dimensional Ceramic Photonic Crystals Fabricated by a
    Solution Method”J. Opt. Soc. Am., B 18, 1084 (2001).
    [22] W. Hattori, H. Someya, M. Baba, H. Kawaura,“Size-based
    continuous-flow directional control of DNA with a nano-pillar
    anisotropic array” J. Chromatogr. A1051,141 (2004)
    [23] X.-M. Yan, S. Kwon, A.M. Contreras, M.M. Koebel, J. Bokor, G.A. Somorjai, “Fabrication of Dense Arrays of Platinum Nanowires on Silica, Alumina, Zirconia and Ceria Surfaces as 2-D Model Catalysts ”Catal. Lett. 105, 127 (2005).
    [24] y.-f. chang, q.-r. chou, j.-y. lin, c.-h. lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique”, Appl. Phys., A 86, 193–196 (2007).
    [25] R. d’Agostino, D.L. Flamm, J. Appl. Phys. 52, 162 (1981).
    [26] H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek,“The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench
    etching with profile control”J. Micromech. Microeng. 5, 115(1995)
    [27] 龍柏華,“濕蝕刻製程介紹暨機台原理簡介”, 光連雙月刊, 48期,37-41 (2003).
    [28] Kuiqing Peng, Yunjie Yan, Shangpeng Gao, and jing
    Zhu,“Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition”, Adv. Funct. Mater., 13, 127-132(2003).
    [29] Kuiqing Peng, Zhipeng Huang, and jing Zhu,“Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays”, Adv. Mater., 16, 73-76(2004).
    [30] Kuiqing Peng, Zhipeng Huang, and jing Zhu,“Synthesis of
    Large-Area Silicon Nanowires Arrays via Self-Assembling
    Nanoelectrochemistry”, Adv. Mater, 14, 1164-1167(2002).
    [31] C. Chartier, S. Bastide, C. Le’vy-Cle’ment,“Metal-assisted chemical etching of silicon in HF–H2O2”, Electrochimica Acta, 53, 5509–5516(2008).
    [32] Dae Ho Lee, Yongkwan Kim, Gregory S. Doerk, Ian Laboriante and Roya Maboudian,“Strategies for controlling Si nanowire formation during Au-assisted electroless etching”, J. Mater. Chem., 21,10359(2011).
    [33] Shih-Wei Chang, Vivian P. Chuang, Steven T. Boles, Caroline A. Ross, and Carl V. Thompson,“Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon Nanowires Fabricated using Block-Copolymer Lithography and Metal-Assisted Etching”,Adv. Funct. Mater., 19, 2495–2500(2009).
    [34] Pradeep Sharma, and Yuh-Lin Wang, Directional Etching of Silicon by Silver Nanostructures, Applied Physics Express, 4 ,025001 (2011).
    [35] Zhipeng Huang, Hui Fang, and Jing Zhu,“Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density”, Adv. Mater., 19, 744–748 (2007).
    [36] Hsin-Ping Wang, Kun-Yu Lai, Yi-Ruei Lin, Chin-An Lin, and Jr-Hau He,“Periodic Si Nanopillar Arrays Fabricated by Colloidal Lithography and Catalytic Etching for Broadband and Omnidirectional Elimination of Fresnel Reflection”, Langmuir, 26(15), 12855–12858(2010).
    [37] W. L. Brown, T. Venkatesan, and A. Wagner,
    "Ion-Beam Lithography," Nuclear Instruments & Methods in
    Physics Research 191 (1-3), 157-168 (1981).
    [38] T. W. Barbee, "Multilayer Optics for the Soft-X-Ray and Extreme Ultra-Violet," Phys. Scr. T31, 147-153 (1990).
    [39] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom,“Nanoimprint lithography”, J. Vac. Sci. Technol. B 14(6), 4129-4133(1996).
    [40] Younan Xia, Dong Qin, and George M. Whitesides,“Microcontact Printing with a Cylindrical Rolling Stamp: A Practical Step Toward Automatic Manufacturing of Patterns with Submicrometel. Sized Features”, Adv. Mater. 8, No, 121015-1017(1996)
    [41] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, G. M. Whitesides,“Improved Pattern Transfer in Soft Lithography Using Composite Stamps”Langmuir 18, 5314 (2002)
    [42] T. W. Odom, V. R. Thalladi, J. C. Love, G. M. Whitesides,“Generation of 30−50 nm Structures Using Easily Fabricated, Composite PDMS Masks“J. Am. Chem. Soc., 124, 12112 (2002)
    [43] H-W Li, B. V. O. Muir, G. Fichet, W. T. S. Huck,“Nanocontact Printing:  A Route to Sub-50-nm-Scale Chemical and Biological Patterning“ Langmuir, 19,1963 (2003)
    [44] X. D. Huang, L.-R. Bao, X. Cheng, L. J. Guo, S. W. Pang et al.,“Reversal imprinting by transferring polymer from mold to substrate” J. Vac. Sci. Technol. B 20, 2872 (2002).
    [45] 謝信宏, “奈米多孔模具製備及其在壓印技術上之應用”, 國立成功大學化學工程學系碩士論文, 1-121 (1999).
    [46] 謝俊仰,“改良式逆壓印技術應用於無殘餘曾圖案轉移”,國立成功大學化學工程學系碩士論文, 1-155 (1997).
    [47] Xin Yan, Jimin Yao, Guang Lu, Xiao Li, Junhu Zhang, Kun Han, and Bai Yang*,“Fabrication of Non-Close-Packed Arrays of Colloidal Spheres by Soft Lithography” ,J. AM. CHEM. SOC. 127, 7688-7689 (2005)
    [48] Iskender Yilgor*, Sevilay Bilgin, Mehmet Isik, Emel Yilgor,“Facile preparation of superhydrophobic polymer surfaces” , Polymer, 53,1180e1188 (2012) .
    [49] D.Y. Kwok1, 1, A.W. Neumann,“Contact angle measurement and contact angle interpretation” , Advances in Colloid and Interface Science, 81, 167–249 (1999) .

    下載圖示 校內:2019-02-06公開
    校外:2019-02-06公開
    QR CODE