簡易檢索 / 詳目顯示

研究生: 張書豪
Chang, Shu-Hao
論文名稱: 變形量測之瞬時相移電子斑點干涉系統之研究
Instantaneous phase shifting electronic speckle pattern interferometry system for deformation measurement
指導教授: 陳元方
Chen, Yuan-Fang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 92
中文關鍵詞: 電子光斑干涉術瞬間相移電子光斑干涉儀相位移法相位展開法
外文關鍵詞: electronic speckle pattern interferometry, instantaneous phase-shifting interferometer, phase shifting, phase unwrapping
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在電子光斑干涉術中,我們常使用相位移法得到相位。常見的相位移法如利用步進馬達、壓電致動器推動試件或參考面,或是轉動偏極板以得到不同相位移干條紋圖像,但容易因周遭環境因素降低量測精準度,因此發展瞬間相移系統用來提高量測精準度。本研究主要使用麥克森干涉儀架設,搭配分光鏡(Beam-Splitter, BS)及直角反射鏡(Right Angle Prisms)所組成之一分四鏡組,藉由光通過極化分光鏡(Polarized Beam-Splitter,PBS)、偏極板(Polarizer)及四分之一波板(Quarter-Wave Plate, QWP),經一分四鏡組分光後可形成不同相移之四圖像。利用此光學架構搭配單一CCD(Charge Coupled Device)相機建立瞬間相移電子光斑干涉儀。
      本文中使用三種光斑相位計算方法:位移前後相位相減法(方法一)、位移前後光斑圖同相位移相減法(方法二)、位移後四相移光斑圖減位移前任意一相移光斑圖法(方法三)。由推導及模擬的方式驗證這三種光斑相位計算方法的可行性後,再運用於實驗之光斑圖,由這三種方法求出之相位值,經相位判斷及相位展開後,由電子光斑面外位移原理,所推導出的相位值與高度值之關系式,即可得試件之面外位移量。
      使用非瞬時相移實驗來比較三種光斑相位計算方法於實驗之光斑圖,其中方法一之光斑相位計算法,所求得之位移量及位移方向皆符合施加於試件之位移。方法二之光斑相位計算法,相位截斷線附近無法明確呈現,且相位截斷線附近所展開之位移量會有較大的誤差產生。方法三之光斑相位計算法,所求得之位移量也近似施加於試件之位移,但方法三比起方法一較不方便在於截斷頻率之選擇不易。接著以瞬時相移靜態及動態實驗所得之光斑圖像,利用三種不同光斑相位計算方法所求出試件之面外位移,由靜態之實驗結果來看,其相位圖之相位資訊並不明確,因此,針對實驗架設及光斑圖做檢測及分析,在實驗架設檢測中經過四相位檢測,我們可確定四步相移皆有呈現出來。在光斑圖之檢測方面,對光斑圖彼此間的相關性做濾波處理,拿3x3中值濾波與平均濾波比較後,以平均濾波之效果為佳,因此以平均濾波對光斑圖進行濾波處理,根據檢測及分析之結果進行調整後,用在靜態實驗上其相位圖並未獲得改善,而最後藉由光斑尺寸與CCD光圈的關系式,將光斑尺寸縮小後,經靜態實驗相位圖雖有明顯改善,但仍然不夠好。在瞬時相移實驗中我們需要先克服光斑圖間相關性的問題,其次為提升相位正確性才能使實驗有更好的結果。

      The phase shifting method is usually applied to the Electronics Speckle Pattern Interferometry to obtain phases. Common phase shifting methods such as using stepping motor or piezoelectric actuator to move reference mirror or specimen, rotating the polarizer to get different interference fringe image are easily affected by environmental factors and reduces the measurement precision. Therefore, the instantaneous phase-shifting interferometry is developed to enhance the stability of measurement. In this research, Michelson interferometer and a four-bucket optical elements component were used. The component composed of beam splitters (BS) and right angle prisms (RAP). When the light passes through the polarized beam splitters (PBS), polarizer, quarter wave plates (QWP) and the four-bucket optical elements component, four phase-shifting images were captured by one CCD camera. By using this optical configuration with single CCD camera, an instantaneous phase-shifting electronic speckle pattern interferometry is set up.
      In this article, three different methods to calculate the phase of speckle pattern are used: 1) the before- and after-displacement phase subtraction method 2) the before- and after-displacement phase subtraction of the same phase shifting speckle images method 3) the four after-displacement phase shifting speckle pattern images and either one before-displacement phase shifting speckle image subtraction and filtering method. The simulation and derivation results show that three different speckle pattern phase calculation methods could be used and then applied to the speckle images obtained from experiments. Phases were obtained by three different phase calculation methods. After phase judgment and phase unwrapping, the phases were substitute into the equation of the out of plane displacement and the out of plane displacement of the specimen were calculated.
    The non-instantaneous phase-shifting experiment is applied to the speckle pattern images obtained from experiments to compare the three different speckle pattern phase calculation methods. In method one, the displacement and the direction are in line with the displacement we exert. In method two, the phase blockline is unapparent and there is large error when unwrap the displacement nearby the phase blockline. In method three, the displacement is also in line with the displacement we exert. But method three is not more convenient than method one because the cutoff frequency is not easy to choice. These methods were applied to the speckle images obtained from the either static or dynamic instantaneous phase-shifting experiments to calculate the out of plane displacement of the specimen. From the result of the static experiment, the phases of the phase images are not clear. Therefore, the configuration of the experiments is examined and the speckle pattern images are analyzed. By four phase examination we are certain that the four step displacement is effective. In the examination of the speckle pattern images, filtering is applied to the correlation of the speckle pattern images. Compared to the 3x3 median filtering, the average filtering is more effective. So the average filtering is applied to the speckle pattern images. After the some changes according the result of the examination, the result of the static experiments is not improved. Eventually, by adjusting the aperture of CCD camera to minify the size of speckles in the static experiments, the phase image is significantly improved but not well enough. In instantaneous phase shifting experiment, we have to overcome the problem of correlation between speckle pattern images first then the correctness of the phases to get better result from experiments.

    摘要 I Abstract III 誌謝 VI 目錄 VII 圖目錄 XI 表目錄 XVIII 符號說明 XIX 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 文獻回顧 3 1.4 本文架構 6 第二章 電子光斑干涉術之基本原理 7 2.1 電子光斑干涉術之基本概念 7 2.2 電子光斑干涉術之基本原理 8 第三章 瞬間相位移干涉術原理 13 3.1 瞬間相位移干涉原理 13 3.2 三種相位計算方法 18 3.2.1 位移前後相位相減法(方法一) 18 3.2.2 位移前後同相位移相減(方法二) 19 3.2.3 位移後四相移光斑圖減位移前任意一相移光斑圖法(方法三) 20 3.3 相位判別 22 3.4 相位展開法 22 3.5 濾波法介紹 23 3.5.1 中值濾波 23 3.5.2 疊代演算法 23 3.6 數位影像相關法 25 第四章 實驗模擬與分析 29 4.1 光斑圖斜面位移模擬與分析 30 4.1.1 位移前後相位相減模擬(方法一) 31 4.1.2 位移前後光斑圖同相位移相減模擬(方法二) 32 4.1.3 位移後四相移光斑圖減位移前任意一相移光斑圖模擬(方法三) 34 4.1.4 方法三各系列間相異分析 41 第五章 實驗裝置系統與校正 45 5.1 實驗裝置系統 45 5.1.1 實驗系統 45 5.1.2 非瞬時相移實驗裝置 45 5.1.3 瞬時相移實驗裝置 46 5.2 實驗試件 46 5.3 校正偏極板與四分之一波板角度 46 5.4 DIC校正取像位置 48 5.5 光強校正 49 5.6 實驗流程 51 第六章 實驗結果與討論 52 6.1 非瞬時相移實驗 52 6.1.1 位移前後相位相減法(方法一) 53 6.1.2 位移前後光斑圖同相位移相減法(方法二) 55 6.1.3位移後四相移光斑圖減位移前任意一相移光斑圖法(方法三) 57 6.2 瞬時相移靜態實驗 61 6.2.1 位移前後相位相減法(方法一) 62 6.2.2 位移前後光斑圖同相位移相減法(方法二) 63 6.2.3 位移後四相移光斑圖減位移前任意一相移光斑圖法(方法三) 64 6.3 實驗架設檢測 67 6.4 光斑圖之濾波 69 6.5 瞬時相移靜態量測對光斑圖濾波 73 6.6 光斑顆粒尺寸之調整 75 6.6.1 位移前後相位相減法(方法一) 76 6.6.2 位移前後光斑圖同相位移相減法(方法二) 77 6.6.3 位移後四相移光斑圖減位移前任意一相移光斑圖法(方法三) 78 6.7 瞬時相移動態實驗 81 6.8 討論 83 第七章 結論與建議 85 7.1 結論 85 7.2 建議 87 參考文獻 88

    1.J. N. Butters and J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering Measurement” , J. Measurement and Control, Vol. 4,pp.349-354,1971.
    2.C. Wykes, “Use of Electronic Speckle Pattern Interferometry(ESPI) in the Measurement of Static and Dynamic Surface Displacements” , Optical Engineering, Vol.21, No.3, pp.400-406, 1982.
    3. M. O. Peterson and P. D. Jensen, “Computer-aided electronic speckle pattern interferometry(ESPI). Deformation analysis by fringe manipulation”, Non-Destr. Test. Int, Vol. 21(6), pp.422-424, 1988.
    4. C.L. Koliopoulos , “Simultaneous Phase Shift Interferometer” Proc. of SPIE Vol. 1531, 119-127, 1991.
    5. S. Suja Helen, M.P. Kothiyal, R.S. Sirohi, “Achromatic Phase-Shifting by A Rotating Polarizer” , Optics Communications , Vol. 154 , P.249-254 , 1998.
    6. B.B. Garcia , A.J. Moore , C. Perez-Lopez , L. Wang, T. Tschudi , “Spatial Phase-Stepped Interferometry Using A Holographic Optical Element” , Opt. Eng. 38(12) , 2069-2074 , 1999.
    7. A. Hettwer , J. Kranz , J. Schwider , “Three Channel Phase-Shifting Interferometer Using Polarization-Optics and A Diffraction Grating” , Opt. Eng. 39 , 960-966 , 2000.
    8. B.K.A. Ngoi , K. Venkatakrishnan , N.R. Sivakumar , T. Bo , “Instantaneous Phase Shifting Arrangement for Micro surface Profiling of Flat Surfaces” , Optics Communications 190 , 109-116 , 2001.
    9. Jos_e A. Ferrari, Erna M. Frins, C_esar D. Perciante,“A new scheme for phase-shifting ESPI using polarized light”, Optics Communications 202 2002.
    10. P.A.A.M.Somers and Nandini Bhattacharya, “Maintaining sub-pixel alignment for a single-camera two-bucket shearing speckle interferometer”, PURE AND APPLIED OPTICS vol.7 7 p.385-391,2005.
    11. 陳昭宇, “高速電子斑點干涉儀之研製:整合雷射都卜勒干涉術與時進相移法之創新設計” ,國立台灣大學應用力學研究所碩士論文,2005。
    12. 杜宜亮, “應用瞬間相位移干涉術於表面形貌量測”,國立成功大學機械工程研究所碩士論文,2008。
    13. Yue Kaiduan ,Yuan Mei ,Yi Yaxing “Research of full-field deformation measurement system”, International Conference on Optical Instruments and Technology, Proc of SPIE Vol.7511,2009.
    14. 陳志賢, “瞬時相移電子光斑干涉系統之研究”,國立成功大學機械工程研究所碩士論文 , 2011。
    15. J. M. Burch and J. M. J. Tokarski , “Production of Multiple Beam Fringes from Photographic Scatters” , Optica Acta , Vol. 15 , No. 2 , pp.101-111, 1968.
    16. E. Archbold and A. E. Ennos, “Displacement Measurement from Double-Exposure Laser Photographs” , Optica Acta, Vol. 19, No. 4, pp.253-271 , 1972.
    17. A. A. Sundi , and F. P. Chiang , “Separation of 3-D Displacement Components in the White Light Speckle Method” , Optics & Laser Technology , Vol. 15 , pp. 41-45 , 1983.
    18. D. E. Duffy , “Measurement of Surface Displacement Normal to the Line of Sight” , Experimental Mechanics , Vol. 14 , pp. 378-384 , 1974.
    19. J. N. Butters and J. A. Leendertz , “Holographic and Video Techniques Applied to Engineering Measurement” , J. Measurement and Control , Vol. 4 , pp. 349-354 , 1971.
    20. R.Jones and C. Wykes “Holographic and Speckle Interferometry”, Cambridge University Press, 1989.
    21. Catherine Wykes , “Use of Electronic Speckle Pattern Interferometry (ESPI) in the Measurement of Static and Dynamic Surface Displacement” , optical engineering , Vol. 21 No.3 , p.400-406 , 1982.
    22. P.A.A.M. Somers , N. Bhattacharya , “Polarization Plane Rotator Used asA Phase Stepping Device in A 2-channel Shearing Speckle Interferometer” , Proc. of SPIE Vol. 5856 , 664-673 , 2005.
    23. A.L. Fymat , “Jones's Matrix Representation of Optical Instruments. I: Beam Splitters” , Applied Optics Vol. 10 , No. 11 , 2499-2505 , 1971.
    24. Yue Kaiduan et al. , “Research of full-field deformation measurement system” , Proc. Of SPIE Vol. 7511 , 2009.
    25. M.P. Kothiyal , C. Delisle , ”Polarization Component Phase Shifters in Phase Shifting Interferometry: Error Analysis” , Journal of Modern Optics Vol. 33 No. 6 , 787-793 , 1986.
    26. 莊佳橙, “應用自動化相位移陰影疊紋系統量測晶圓外型” , 國立成功大學機械工程研究所碩士論文 , 2003。
    27. 張柏毅, “應用條紋投影法及條紋反射法量測物體表面形貌” , 國立成功大學機械工程研究所碩士論文 , 2005。
    28. W.W. Macy, “Two-Dimensional Fringe-Pattern Analysis” ,Applied Optics Vol. 22 NO. 23 , 3898-3901 , 1983.
    29. 楊韶綸, “條紋反射法之向量解析與應用” , 國立成功大學機械工程研究所碩士論文 , 2007。
    30. J. Gu , Y. Y. Hung , and F. Chen , "Iteration algorithm for computer-aided speckle interferometry" , Applied Optics , Vol.33(23) , p5308-5317 , 1994.
    31. 葉力旗, “應用數位相關法於白光干涉形貌量測之縫合” , 國立成功大 學機械工程研究所碩士論文 , 2007。
    32. 陳天賜, “應用數位相關法於微試件之測試” , 國立成功大學機械工程 研究所碩士論文 , 2003。
    33. P. A. A. M. Somers and Nandini Bhattacharya , "Maintaining sub-pixel alignment for a single-camera two-bucket shearing speckle interferometer" , pure and applied optics vol.77 p385–p391 , 2005.

    無法下載圖示 校內:2017-02-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE