| 研究生: |
錢俊諺 Chien, Chun-Yen |
|---|---|
| 論文名稱: |
多孔性鈣基複合材骨取代物性質之研究(I) Investigation of Properties of Porous Calcium-Based Composite Bone Substitute (I) |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 多孔性 、鈣基複合材 、骨取代物 |
| 外文關鍵詞: | porous, calcium-based composite, bone substitute |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多孔性鈣基複合材骨取代物透過鹽溶濾出的方式產生一多孔性結構,孔洞大小適合骨細胞貼覆生長外,孔隙度更足夠高使植入材在人體中快速被吸收引導新生骨長入。
本實驗第一部分將探討製成塊狀多孔性鈣基複合材的基本性質,包括抗壓強度、重量損失率、孔隙度、細胞毒性等,並透過SEM觀察了解。第二部分則把塊狀多孔性鈣基複合材製成顆粒狀,針對不同需求而分成不同大小,大幅增加了臨床上的實用性。
The porous calcium-based bone substitute can be formed a porous structure by using salt leaching method.The pore size is suitable for cell adhesion and growth.It can be rapidly resorbable in human body and inducing bone ingrowth due to high porosity.
The first part of experiment is to be discussed about the properties of block form of porous bone substitute. The properties include compressive strength, weight loss, porosity, and cytotoxicity and further analysed by SEM observation. The second part is to make the porous bone substitute from block type to granule type.Different granule sizes fulfill kinds of requirements, and it will be more practically applied for clinical use.
Albee F, Morrison H. Studies in bone growth.Annals of Surg 1920;71:32-38.
Amathieu L. and Boistelle R., Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth,1988;88: 184.
Anthony P.Hollander ,Paul V. Hatton. Biopolymer Methods in Tissue Engineering 2004
Block M.S, Kent T.N, Guerra. Implants in dentistry. W.B. Saunders Company,1997
Bohner M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000;31:S-D37-47.
Bohner M. and Baumgart M., Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes, Biomaterials, 2004;25[17] 3569–3582.
Bohner M., Gbureck U., Barralet J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment Biomaterials, 2005; 26 6423–6429
Bohner M., New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures; Biomaterials 2004;25 741–749.
Breed AL., Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop, 1974; 102: 227-44.
Brown WE, Chow LC., A new calcium phosphate setting cement. J Dent Res Abs 1983;207:62-672.
Brown WE, Chow LC., Combinations of sparingly soluble calcium phosphates in slurries and paste as mineralizers and cements. US Patent 1986, No. 4612053.
Brown WE, Chow LC., Dental resptorative cement pastes. US. Patent 1985, No. 4518430.
Brown WE, Chow LC., Singular points in the chemistry of teeth. J Dent. Res 1975;54:74.
Chow LC., Calcium phosphate materials: reactor response ; Adv Dent Res 2(1):181-184, August, 1988
Chow LC, Takagi S., Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
Chow L C, J. Ceram. Soc. Japan Int. Edn. 99 (1992) 927.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April 1974:20-24.
Costantino PD, Friedman CD: Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27:1037-1074.
Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
de Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991;99:943-953.
Eds.N.Ashammakhi, P.Ferretti. Topic in Tissue Engineering 2003 Ch9. L.-M.Tielinen. Bioabsorbable Polymer and Bone Growth Factor Composite.
Fernaâ ndez* E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications, Journal of Materials Science: Materials in Medicine 10 (1999) 169±183
Fukase Y, EANES' E.D, TAKAGI3 S., CHOW L.C, and BROWN W.E.; Setting Reactions and Compressive Strengths of Calcium Phosphate Cements;J Dent Res 69(12):1852-1856, December, 1990.
Getter L, Bhaskar S, Cutright D, Perez B, Brady J, Driskell T, O’Hara M. Three biodegradable calcium phosphate slurry implants in bone. J Oral Surg 1972;30:263-268.
Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
Hockin H.K. Xu, Michael D.Weir. "Injectable and macroporous calcium phosphate cement scaffold".Biomaterials 27 (2006) 4279-4287
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982;8:131-140.
Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-78.
Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 1976;11:2027-35.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
Jie Wei, Junfeng Jia, Fan Wu. "Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration".Biomaterials 31 (2010) 1260-1269.
Jonck LM, Grobbelaar CJ. "The biological compatibility of glass ionomer cement in joint replacement." Clin. Mater. , 1989; 4: 85-107.
Kokubo T. "Recent progress in glass-based materials for biomedical applications." The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
Köster K, Karbe E, Kramer H, Heide H, König R. Experimenteller knochenersatz durch resorbierbare calcium phosphate keramik. Langenbecks Arch Chir 1976;341:77-86.
Lewis K. N, Thomas M. V, Puleo D. A.; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med 2006;17: 531–537.
Lewry A.J. and J. Williamsoon, "The setting of gypsum plaster partIII the effect of additives and impurities."J of materials science. Vol 29, p6085~6090, 1994.
McKay W.F, Peckham S.M, Badura J.M. A comprehensive clinical review
of recombinant human bone morphogenetic protein-2
(INFUSE_bone graft). Int Orthop 2007;31:729–34.
Monma H, Goto M and Kohmura T , Gypsum & Lime, 1984 No.188, 11-16
Moore W.R, Graves S.E, Bain G.I. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
Myerson A.S. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
Nilsson M., Ferna´ndez E. Sarda S. Lidgren 1L., Planell J.A. "Characterization of a novel calcium phosphate/sulphate bone cement." J Biomed Mater Res 61: 600–607, 2002.
Nilsson M., Wielanek L., J.S. Wang, K. E. Tanner, L. Lidgren. "Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement." Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
Park JB. Biomaterials, An Introduction. Plenum Press. New York, 1979.
Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
Park JB, Lakes RS. Biomaterials: an introduction. Plenum Press, 2nd ed., New York, 1992.
Peelen J, Rejda B, Vermeiden J, de Groot K. Sintered tricalcium phosphate as bioceramic. Science of ceramics 1977;9:226-236.
Ray R, Degge J, Gloyd P, Mooney G. Bone regeneration. J Bone Joint Surg 1952;34A:638-647.
Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. Academic Press, California, 1996;222-223.
Roy D, Linnehan S. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974;247:220-222.
Silver FH. Biomaterials, medical devices, and tissue engineering: an integrated approach. Chapman & Hall, New York, 1994.
Simske SJ, Ayers RA, Bateman TA. Porous materials for bone engineering. Mater Sci Forum 1997;250:151-82
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58.
Song H.Y, Esfakur Rahman A.H.M., Lee B.T. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid, J Mater Sci: Mater Med 20:935–941,2009.
Takag i S, Chow LC, Ishikawa K. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19 (1998) 1593Ð1599
Tsuruga E, Takita H, Itoh H. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 1997;121:317-24
Vereecke G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO3-H2O. J Cryst Growth 1990;104:820-832.
Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):1230-1238, 2004.
Ying. Nanocrystalline apatites and composite prostheses incorporating them, and method for their production ,US patent 6013591, 2000.
http://en.wikipedia.org/wiki/List_of_bones_of_the_human_skeleton
http://darkwing.uoregon.edu/~louiso/BNSTRUC.GIF
張炳龍, ROSS 組織學, 合記圖書出版社, 147-158, 1991
梁智仁,“骨質疏鬆致骨折專治生物材料的研製與市場化.”京港學術交流第五十四期, 2002
汪建民, 材料分析, 中國材料科學學會, 1998
邱家昌, 生物醫學, 2008年第一卷第三期:264~273
校內:2021-10-11公開