簡易檢索 / 詳目顯示

研究生: 宋人豪
Song, Jen-Hao
論文名稱: 高C軸取向氮化硼鋁薄膜的製備、特性及其應用之研究
Preparation, Characterizations and Applications of Highly C-axis Aluminum Boron Nitride Thin Films
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 133
中文關鍵詞: 氮化鋁氮化硼鑽石鈮酸鋰發光二極體表面聲波元件
外文關鍵詞: AlN, BN, Diamond, LiNbO3, LED, SAW devices
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Wurtzite結構的氮化硼鋁BxAl1-xNy (0.001≦x≦0.07, 0.85≦y≦1.0 5)薄膜已被生成且發表。這個材料具有相當多優良的性質,包含比純氮化鋁(AlN)更高的硬度值、更高的聲波速率與更寬的能帶。這個研究利用雙磁控濺鍍法製備高C軸取向的氮化硼鋁BxAl1-xNy薄膜,並探討其應用於發光二極體元件與表面聲波濾波器元件之性質。
    首先,C軸取向氮化鋁薄膜生長於鑽石基板上的結構對於高功率發光二極體(Light Emitting Diode; LED)之磊晶氮化鎵(GaN)成長是一個非常理想的基材,由於固溶硼原子的氮化鋁其晶格較純氮化鋁小且更接近鑽石,若氮化硼鋁薄膜成長於鑽石與氮化鋁薄膜之間,則可以成為一個縮小兩者晶格差異的中間緩衝層,因此,我們討論了利用高C軸取向氮化硼鋁薄膜去成長更高品質的氮化鋁的可行性,其中除了瞭解氮化硼鋁薄膜成長於多晶鑽石基板的性質與成長機制,本研究也針對濺鍍參數對於薄膜微結構的影響做探討。
    結果顯示C軸取向的氮化硼鋁薄膜可被成功的製備且其硼原子含量隨著交流濺鍍靶槍功率增加而增加,硼原子以置換的形式佔據鋁原子在氮化鋁晶格中的位置,且氮化硼鋁薄膜的整體晶格較純氮化鋁小。但是鑽石與C軸取向氮化硼鋁薄膜間仍有晶格上的差異,這也造成了薄膜在沉積初期存在一個壓應力且阻止了結晶結構的生成,因此C軸取向氮化硼鋁薄膜沉積於鑽石基板是一個連續變化的結構成長,由無方向性奈米結晶結構層逐漸轉變成C軸取向柱狀晶結構。另一方面,若調整製程參數使到達基板的原子具有較高的能量,則也有助於薄膜形成高品質的C軸取向結晶結構,因此我們可以在高濺鍍功率、高基板溫度、高氮氣分壓與施加基板偏壓等參數的條件下觀察到有較薄厚度之無方向性奈米結晶結構層。而且,控制適當的沉積條件如施加基板偏壓或高氮氣分壓的條件下,結果顯示於多晶鑽石基板上沉積氮化硼鋁薄膜可獲得比純氮化鋁更高品質的C軸取向結晶結構。
    再者,擁有高機電偶合係數(Electro-mechanical coupling factor, K2)與高表面聲波(Surface acoustic wave, SAW)速率等性質的表面聲波濾波器將是未來的發展趨勢,在本研究藉由於128° Y-X鈮酸鋰(LiNbO3)基板與鑽石基板上沉積C軸取向晶氮化硼鋁薄膜,進一步提升表面聲波濾波器的操作頻率與性質,結果顯示,C軸取向晶氮化硼鋁薄膜擁有比氮化鋁薄膜更高的壓電係數與揚氏係數,而且,C軸取向晶氮化硼鋁薄膜的高剛性確實可進一步的提升鈮酸鋰與鑽石表面聲波濾波器元件的操作頻率。在鈮酸鋰表面聲波濾波器元件方面,當氮化硼鋁薄膜沉積厚度增加其元件的表面聲波速率也隨之增加(固定指叉換能器(Interdigital Transducer, IDT)波長) ,機電偶合係數僅有些微的下降,在鑽石表面聲波元件方面,氮化硼鋁薄膜/鑽石結構的元件其中心頻率與表面聲波速率分別高達4.43 GHz與8860 m/s,其值一超越氮化鋁薄膜/鑽石結構的元件,除此之外,其表面聲波元件也保持優良的機電偶合係數0.5%。

    Boron-aluminum nitride BxAl1-xNy(0.001≦x≦0.07, 0.85≦y≦1.0 5)films having wurtzite type structure are proposed. The material has higher hardness, higher sound velocity and wider band gap than hexagonal aluminum nitride. This study relates to a co-sputtered c-axis wurtzite BxAl1-xNy coating which is utilized for light emitting devices or surface acoustic wave devices.
    First, the AlN-on-Diamond architecture is ideal for growing GaN by MOCVD for the manufacture of LED with very high power (e.g. 30 W). Due to the boron doping can shrink AlN lattice to make it closer to diamond. The BxAl1-xNy layer was used to bridge the gap of lattice mismatch between diamond and AlN. We demonstrated the viability by coating a diamond film with a buffer layer of oriented AlN that incorporated BN to enhance the texturing. The properties and growth mechanism of BxAl1-xNy film on diamond were discussed. In addition, the relationship between the microstructures and the sputtering condictions were discussed.
    The results indicated that c-axis oriented BxAl1-xNy film could be prepared by co-sputtered system and the boron content in BxAl1-xNy film increased with increase of RF sputtering power. The lattice constant of BxAl1-xNy films were smaller than pure AlN, suggesting the substitution of smaller boron atoms at Al positions. Because diamond has a significantly tighter lattice than BxAl1-xNy, the initial deposition was under tremendous compressive stress, which prevented the formation of the crystalline phase. The BxAl1-xNy film on diamond substrates shows a continuous variation in structure, from randomly oriented nano grains to c-axis oriented columns. If the sputtered atoms have higher energy from target to a substrate, the growth films will obtain higher quality of c-axis orientation structure. Therefore, the thickness of randomly oriented nano grains decreased with increasing sputtering power, nitrogen concentration, substrate temperature and bias voltage. As the film was deposited under substrate bias voltage or at high nitrogen concentration, the BxAl1-xNy film with higher film quality than AlN was observed.
    Second, SAW devices which exhibit a large piezoelectric coupling constant and a high SAW velocity property are needed in the future. In this study, c-axis orientated BxAl1-xNy film on 128° Y-X LiNbO3 and diamond substrate were used to boost the SAW operation frequency. The resulting films exhibit a higher piezoelectric coefficient d33 and higher Young』s modulus than AlN films. Moreover, the greater rigidity of BxAl1-xNy film further boosts the resonance frequency of LiNbO3 and diamond SAW device. The LiNbO3 SAW velocity increases along with the films thickness (at a fixed IDT wavelength), but the K2 value shows a slight decrease. Considering the SAW wavelength (=2 µm), the center frequency and surface acoustic velocities of BxAl1-xNy on diamond are 4.43 GHz and 8860 m/s. These results are better than that on AlN/diamond devices. Furthermore, the K2 value (0.5%) of BxAl1-xNy on diamond SAW device showed a good performance.

    總目錄 中文摘要 I Abstract IV 致謝 VI 總目錄 VII 第一章、緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文章架構 4 第二章、文獻回顧 6 2.1 電漿的產生 6 2.2 反應磁控濺鍍 8 2.3 射頻濺射 9 2.4 基板自偏壓效應 10 2.5 鍍層的成核 12 2.6 氮化鋁薄膜 16 2.6.1 氮化鋁的基本特性 16 2.6.2 高 c 軸取向之氮化鋁薄膜 16 2.7 高 c 軸取向之氮化鋁薄膜應用 20 2.7.1 作為成長磊晶氮化鎵之緩衝層 20 2.7.2 作為表面聲波元件之應用 27 2.8 高 c 軸取向之 Wurtzite 氮化硼鋁薄膜 33 2.9 表面聲波元件壓電現象 36 2.10 表面聲波元件參數 36 2.10.1 聲波波速(Vp) 36 2.10.2 機電耦合係數(K2) 37 第三章、實驗方法與步驟 38 3.1 實驗流程圖 38 3.2 實驗的材料 39 3.3 實驗設備 39 3.4 濺鍍的步驟與條件 40 3.4.1 基材前處理 40 3.4.2 濺鍍流程 40 3.5 鍍層的分析 43 3.5.1 濺鍍速率的測量 43 3.5.2 橫截面微結構觀察 43 3.5.3 X-ray 繞射分析 43 3.5.4 表面粗糙度分析 44 3.5.5 成份與化學鍵結分析 44 3.5.6 薄膜壓電係數分析 45 3.5.7 奈米壓痕試驗分析 45 3.6 表面聲波元件製作 49 3.6.1 以鈮酸鋰為基板的表面聲波元件 49 3.6.2 以鑽石為基板的表面聲波元件50 3.7 表面聲波元件量測 50 第四章、結果與討論 55 4.1 以雙磁控濺鍍法於鑽石基板上製備氮化硼鋁薄膜 55 4.1.1 反應濺鍍速率 55 4.1.2 化學成份與鍵結 55 4.1.3 XRD 微結構分析 62 4.2 製備具高 C 軸取向(002)結構氮化硼鋁薄膜作為 LED 鑽石基板之緩衝層 70 4.2.1 橫截面微結構分析 70 4.2.2 成長機制探討 72 4.2.3 DC 鋁靶濺鍍鎗功率影響 83 4.2.4 基板溫度、基板偏壓與氮氣分壓影響 89 4.2.5 最佳濺鍍參數 93 4.3 高 C 軸取向氮化硼鋁薄膜應用於表面聲波元件性質之研究 97 4.3.1 氮化硼鋁薄膜壓電係數 97 4.3.2 氮化硼鋁薄膜機械性質 98 4.3.3 氮化硼鋁薄膜應用於鈮酸鋰表面聲波元件 103 4.3.4 氮化硼鋁薄膜應用於鑽石表面聲波元件 113 第五章、結論 119 參考文獻 121 作者簡歷 131 表目錄 Table 2.1 The basic character of AlN.....................19 Table 2.2 The basic character of GaN, AlN and InN........21 Table 3.1 The process parameters for this experiment.....42 Table 4.1 The deposition conditions and film character for BxAl1-xNy films on polycrystalline diamond...............92 Table 4.2 The hardness and Young』s modulus of AlN and BxAl1-xNy film on 128° Y-X LiNbO3 substrates 102 圖目錄 Fig. 1.1 The BxAl1-xNy film as a new interface between diamond and AlN ......................................... 5 Fig.2.1 Schematic illustration of R.F. glow discharge.....7 Fig.2.2 Interaction of ions with target surface..........13 Fig.2.3 Schematic depiction of the energetic particle bombardment effects on surfaces and growing films........14 Fig.2.4 Nucleation and formation of a thin films.........15 Fig. 2.5 The crystal structure of AlN (a) Distorted tetrahedron (b) Unit cell, black circle indicate Al atom, white circle indicate N atom (c) The structure of wurtzite, black circle indicate N atom, white circle indicate Al atom .....................................................18 Fig.2.6 GaN hexagonal wurtzite structure..................23 Fig.2.7 Illustration of Haitz's Law......................26 Fig. 2.8 Surface acoustic wave device schematic...........29 Fig. 2.9 The cooling effect of diamond substrate to avoid the melting down of aluminum IDT when the filter was operated at high power (Sumitomo Electric brochure)......32 Fig. 2.10 Boron Nitride crystal structures................34 Fig. 2.11 Hypothetical phase diagram of the AlN-BN system at 6 GPa.................................................35 Fig. 3.1 Magnetron co-sputtering system..................41 Fig. 3.2 Piezoresponse Force Microscopy system...........47 Fig. 3.3 The typical load-displacement curve for an indentation experiment...................................48 Fig. 3.4 The LiNbO3 SAW device configuration.............51 Fig 3.5 Procedure of formation of IDT by lift-off method (a)Photo resist coating (b) exposure (c) development (d)Al electrodes (e) Photo resist stripping....................52 Fig. 3.6 Calculated (a) electromechanical coupling coefficients (K2) (b)phase velocities dispersion curve of the first five Rayleigh SAW modes propagation in IDT/(002) AlN/(111) diamond........................................53 Fig. 3.7 (a) SAW filter and (b) One - port resonator configurations...........................................54 Fig.4.1 Deposition rates of BxAl1-xNy thin films were grown at RF power of 0 , 50, 100, 150 and 200 W................56 Fig.4.2 (a) B and (b) Al content with various RF power in BxAl1-xNy films by SIMS analysis.........................57 Fig.4.3 XPS analysis for Al, B, O, and N concentrations in BxAl1-xNy films..........................................59 Fig.4.4 The XPS analysis N 1s peaks of BxAl1-xNy films were with various RF power (B content)........................60 Fig.4.5 The XPS analysis B 1s peak of BxAl1-xNy film Was with 6at.% B content.....................................61 Fig.4.6 θ-2θ X-ray diffraction pattern (a)of pure AlN deposited on diamond substrate. (b) of AlN and BxAl1-xNy films (with 1~6 at. % boron) on diamond substrates.......63 Fig.4.7 FWHM of rocking curve analysis of the films with various RF power of hBN target at (002) reflection.......64 Fig.4.8 Variation of c and a lattice constant of deposited film with different RF power of hBN target...............68 Fig.4.9 SEM cross-section of deposited AlN / BxAl1-xNy film on diamond..............................................69 Fig. 4.10 (002) rocking curve of BxAl1-xNy films with film thicknesses of 120 nm, 400 nm, and 800 nm................76 Fig. 4.11 Cross-sectional TEM bright-field image of BxAl1-xNy films deposited on a polycrystalline diamond substrate. Three selected-area electron-diffraction (SAD) patterns for areas A (lower), B (middle), and C (top) of the film.....77 Fig. 4.12 Cross-sectional TEM bright-field image of the interface between BxAl1-xNy and diamond (area A of Fig. 4.11)....................................................78 Fig. 4.13 Cross-sectional TEM dark-field image of BxAl1-xNy films deposited on a polycrystalline diamond substrate. Nano-size grain (area A) and column structures (areas B and C) are shown.............................................79 Fig. 4.14 Cross-sectional TEM high-resolution lattice images (a and b) and bright-field image (c) of BxAl1-xNy films deposited on a single crystal diamond (111) substrate................................................80 Fig. 4.15 Selected-area electron-diffraction (SAD) patterns for BxAl1-xNy films and a single crystal diamond (111) substrate................................................81 Fig. 4.16 Schematic diagram summarizing the growth of BxAl1-xNy films deposited on a polycrystalline diamond.........82 Fig. 4.17 The θ-2θ X-ray diffraction patterns of the BxAl1-xNy films on the polycrystalline diamond under various DC power at 200 W, 250 W and 375 W, respectively............86 Fig. 4.18 The AFM images of BxAl1-xNy films on polycrystalline diamond under various DC power at (a) 200 W (b) 250 W (c)375 W. The surface roughness (Ra) of these films was 0.706 nm, 0.468 nm and 1.135 nm, respectively..87 Fig. 4.19 The BxAl1-xNy films on polycrystalline diamond cross-section TEM images under various dc power at (a) 200 W(include the SADP of BxAl1-xNy films) (b) 250 W (c)375 W.88 Fig. 4.20 The cross-section TEM images of (a) sample A; the film deposited at a DC power of 300 W, a RF power of 50 W, room substrate temperature, and a N2 concentration of 67 % (b) sample B; the substrate temperature was at 200 ℃...................................................90 Fig.4 20 The cross-section TEM images of (c) sample C; addition of -120 V substrate bias (d) sample D; high N2 concentration of 83 % .................................. 91 Fig.4.21 The AFM images of A, B, C and D sample. The surface roughness (Ra) of these was 0.538 nm, 2.071 nm, 2.516 and 2.862 nm, respectively ....................... 95 Fig. 4.22 XRD patterns of the AlN and BxAl1-xNy films deposited on the polycrystalline diamond with high N2 concentration process .................................. 96 Fig.4.23 The piezoelectric coefficient d33 and fullwidth at half maximum (FWHM) of (002) rocking curve of AlN and BxAl1-xNy films with various atomic B contents................100 Fig.4.24 The nano-hardness and Young』s modules of various B content in deposited AlBN films.........................101 Fig. 4.25 θ-2θ X-ray diffraction pattern of AlN and BxAl1-xNy films with 3 at% boron on 128° Y-X LiNbO3 substrates..............................................106 Fig. 4.26 Cross-sectional TEM bright-field image and selected-area electron-diffraction (SAD) patterns of BxAl1-xNy film deposited on 128° Y-X LiNbO3 substrate.........107 Fig 4.27BxAl1-xNy on 128° Y-X LiNbO3 SAW device.........108 Fig. 4.28 (a) Frequency response (s21), (b) Smith chart (s11) of 128° Y-X LiNbO3................................109 Fig. 4.29 (a) Frequency response (s21), (b) Smith chart (s11) of 128° Y-X LiNbO3 with an AlN layer (thickness = 2.3 μm).....................................................110 Fig. 4.30 (a) Frequency response (s21), (b) Smith chart (s11) of 128° Y-X LiNbO3 with a BxAl1-xNy layer (thickness = 2.3 μm)...............................................111 Fig. 4.31 (a) SAW velocity, (b) electromechanical coupling coefficient (K2) with various thickness of piezoelectric thin films (AlN and BxAl1-xNy) on 128° Y-X LiNbO3.......112 Fig 4.32BxAl1-xNy on diamond SAW device..................115 Fig.4.33 The admittance characteristics measured of (a) AlN and (b) BxAl1-xNy films on diamond substrates SAW device..................................................116 Fig.4.34 The admittance characteristics measured of (a) AlN and (b) BxAl1-xNy films on diamond substrates resonator.117 Fig.4.35 Equivalent circuit model for one-port resonator.118

    [1] F. A. Ponce, D. P. Bour, "Nitride-base Semiconductors for Blue and Green Light-emitting Devices ", Nature 386 351 (1997).
    [2] Yoshitaka Taniyasu, Makoto Kasu, Toshiki Makimoto, "An Aluminium Nitride Ligh-emitting Diode with A Wavelength", Nature Letters 441 325 (2006).
    [3] 王宏灼,「反應性濺鍍法成長氮化鋁薄膜之研究」 國立中山大學電機工程研究所碩士論文36 (1995)。
    [4] H. Lahreche, P. Vennegues, O. Tottereau, M. laugt, P. lorenzini, M. Leroux, B. Beaumont, P. Gibart, "Optimisation of AlN and GaN Growth by Metalorganic Vapour-phase Epitaxy (MOVPE) on Si (1 1 1) ", J. Crystal Growth 217 13 (2000).
    [5] D. Liufu, K. C. Kao, "Piezoelectric, dielectric, and interfacial properties of aluminum nitride films ", J. Vac. Sci. Technol. A 16 2360 (1998).
    [6] H. Amano, T. Asahi, I. Akasaki, "Stimulated Emission Near Ultraviolet at Room Temperature from A GaN Film Grown on Sapphire by MOVPE Using An AlN Buffer Layer", Jpn. J. Appl. Phys. 29 L205 (1990).
    [7] J. T. Glass, B. A. Fox, D. L. Dreifus, B. R. Stoner, "Diamond for Electronics: Future Prospects: Future Prospects of Diamond SAW Devices", MRS Bulletin 23(8) 49 (1998).
    [8] 宋健民, 「Superhard Materials」, 全華出版社, 民國89年。
    [9] R. Rodriguze-Cheng, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand, A. Figueras, "Influence of The Experimental Conditions on Themorphology of CVD AIN Films", J. Crystal Growth. 133 59 (1993).
    [10] Chien-Chuan Cheng, Ying-Chung Chen, Horng-Jow Wang, Wen-Rong Chen, "Morphology and Structure of Aluminum Nitride Thin Films on Glass Substrates", Jpn. J. Appl Phys. 35 1880 (1996).
    [11] B. Aspar, R. Rodrguez-Clement, A. Figuera, B. Armas, C. Combescure, "Influence of The Experimental Conditions on The Morphology of CVD AIN Films", J. Crystal Growth. 129 56 (1993).
    [12] K. S. Stevens. M. Kinniburgh, A. F. Schwatrzman, A. Ohtani, R. Beresford, "Demonstration of A Silicon Field-effect Transistor Using AlN as The Gate Dielectric", Appl. Phys. Lett. 66 3179 (1995).
    [13] 宋健民, 台灣, 發明專利144267號 (1998).
    [14] B. Matthias, J. P. Remeika, "Ferroelectricity in The Ilmenite Structure", Phys. Rev. 76 1886 (1949).
    [15] R. S. Weis, T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure" Appl. Phys. A 37 191 (1985).
    [16] S. Wu, L. Wu, J. H. Chang, F. C. Chang, "SAW Modes on ST-X Quartz with An AlN Layer", Mater. Lett. 51 331 (2001).
    [17] Sean Wu, Yeong-Chin Chen, Yee Shin Chang, "Characterization of AlN Films on Y-128 LiNbO3 by Surface Acoustic Wave Measurement", Jpn. J. Appl. Phys. 41 4605 (2002).
    [18] H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi et al. "High Frequency Surface Acoustic Wave Filter Using ZnO/Diamond/Si Structure", Jpn. J. Appl. Phys. 33 324 (1994).
    [19] M. Ishihara, T. Nakamura, F. Kokai, Y. Koga, "Preparation of AlN and LiNbO3 Thin Films on Diamond Substrates by Sputtering Method", Diam. Relat. Mat. 11 408 (2002).
    [20] G. F. Iriarte, "Surface Acoustic Wave Propagation Characteristics of Aluminum Nitride Thin Films Grown on Polycrystalline Diamond", J. Appl. Phys. 12 9604 (2003).
    [21] X. H. Xu, H. S. Wu, C. J. Zhang, Z. H. Jin, "Morphological Properties of AlN Piezoelectric Thin Films Deposited by DC Reactive Magnetron Sputtering", Thin Solid Films, 388 62 (2001).
    [22] D. Liufu, K. C. Kao, "Piezoelectric, Dielectric, and Interfacial Properties of Aluminum Nitride Films", J. Vac. Sci. Technol. A 16 2360 (1998).
    [23] V. Mortet, O. Elmazria, M. Nesladek, G. Vanhoyland, M. Elhakiki, "Study of Aluminium Nitride/freestanding Diamond Surface Acoustic Waves Filters", Diam. Relat. Mat. 12 723 (2003).
    [24] P. Kirsch, M. B. Assouar, O. Elmazria, V. Mortet, P. Alnot, "GHz Surface Acoustic Wave Devices Based on Aluminum Nitride/diamond Layered Structure Realized Using Electron Beam Lithography", Appl. Phys. Lett. 88 223504 (2006).
    [25] A. J. Noreike, M. H. Fancombe, "Structural, Optical, and Dielectric Properties of Reactively Sputtered Films in the System AlN–BN", J. Vac. Sci. Technol. 6 722 (1967).
    [26] B. Pacl, A. Generosi, V. R. Alberaui, M. Benetti, "A Study of Highly C-axis Oriented AlN Films for Diamond-base SAW devises: Bulk Structure and Surface Morphology", Sensors and Actuators A 137 279 (2007).
    [27] S. M. Rossnagel, "Handbook of Plasma Processing Technology", Noyes Publications, Park Ridge, New Jersey, USA, (1989)
    [28] Brian Chapman, "Glow Discharge Process", John Wiley and Sons, New York, (1980).
    [29] R. Rodriguze-Cheng, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand, A. Figueras, "Influence of The Experimental Conditions on The Morphology of CVD AIN Films", J. Crystal Growth. 133 59 (1993).
    [30] E. Ruiz, Santigo alvarez, P. Alemany, "Electric Structure Properties of AlN", Physical Review B. 49 7115 (1994).
    [31] P. K. Kuo, G. W. Aumer, Z. L. Wu, "Microstructure and ThermalConductivity of Epitaxial AlN Thim Film", Thin Solid Films. 253 223 (1994) .
    [32] 嚴豐明,"高熱傳導率氮化鋁基版材料之簡介", 材料與社會71 45 (1994).
    [33] Morito Akiyama,Tomohiro Harada, Chao-Nan Xu, Kazuhiro Nonaka, Tadahiko Watanabe, "Statistical Approach for Optimizing Sputtering Conditions of Highly Oriented Aluminum Nitride Thin Films", Thin Solid Films 350 85 (1999).
    [34] R. S. Naik, R. Reif, J. J. lutsky, C. G. Sodini, "Low-Temperature Deposition of Highly Textured Aluminum Nitride by Direct Current Magnetron Sputtering for Applications in Thin-Film Resonators", J. Electrochem. Soc. 146 691 (1999).
    [35] W. M. Yim, E. J. Stofko, P. J. Zanzuccgu, J. I. Pankove, M. Ettenberg, S. L. Gilbert, "Epitaxially Grown AlN and Its Optical Band Gap", J. Appl. Phys. 44 292 (1973).
    [36] M. Morita, K. Tsubouchi, N. Mikoshiba, "Optical Absorption and Cathodoluminescence If Epitaxial Aluminum Nitrides Films", Jpn. J. Appl. Phys. 21 1102 (1982).
    [37] S. Yosida, S. Misawa, Y. Fjii, S. Takada, H. Hayakwa, S. Gonda, A. Itoh, "Reactive Molecular Beam Epitaxy of Aluminium Nitride", J. Vac. Sci. Technol. 16 990 (1979).
    [38] J. S. Cherng, D. S. Chang, "Effects of Pulse Parameters on The Pulsed-DC Reactive Sputtering of AlN Thin Films", Vacuum 84 653 (2010).
    [39] M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, Y. Ide, "Control of Preferential Orientation of AlN Films Prepared by The Reactive Sputtering Method", Thin Solid Films 316 152 (1998).
    [40] S. Nakamura, T. Mukai, M. Senoh, "Candela-class High Brightness InGaN/AlGaN Double-heterostructure Blue-light-emitting Diodes", Appl. Phys. Lett. 64 1687 (1994).
    [41] J. W. Orton, C. T. Foxon, "Group III Nitride Semiconductors for Short Wavelength Light-emitting Devices", Rep. Prog. Phys. 61 1–75 (1998)
    [42] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, "High-power InGaN Single-quantum-well-structure Blue and Violet Light-emitting-diodes", Appl. Phys. Lett. 67 1868 (1995)
    [43] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, "Superbright Green InGaN Single-quantum-well-structure Light-emitting diodes", Jpn. J. Appl. Phys. 34 L1332 (1995).
    [44] S. Nakamura, "The Blue Laser Diode, New York", Springer 1 (1997).
    [45] P. Vennegues, B. Beaumont, M. Vaille, P. Giban, "Microstructure of GaN Epitaxial Films at Different Stages of The Growth Process on Sapphire (0 0 0 1)", J. Cryst. Growth 173 249 (1997).
    [46] B. Pecz, M. A. di Forte-Poisson, L. Toth, G. Radnoczi, G. Huhn, V. Papaioannou, J. Stoemenos, "Transmission Electron Microscopy Characterisation of Metalorganic Chemical Vapour Deposition Grown GaN Layers", Mater. Sci. Eng. B 50 93 (1997).
    [47] C. Y. Hwang, M. J. Schurman, W. E. Mayo, Y. C. Lu, R. A. Stall, T. Salagaj, "Effect of Structural Defects and Chemical Impurities on Hall Mobilities in Low Pressure MOCVD Grown GaN", J. Electron. Mater. 26 243 (1997).
    [48] R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Alley, K. Linthicum, L. B. Rowland, S. Tanaka, R. S. Kern, "Gas-source Molecular Beam Epitaxy of III–V nitrides", J. Cryst.Growth 178 87 (1997).
    [49] X. B. Li, D. Z. Sun, M. Y. Kong, S. F. Yoon, "Structural Identification of A Cubic Phase in Hexagonal GaN Films Grown on Sapphire by Gas Source Molecular Beam Epitaxy", J. Cryst. Growth 183 31 (1998).
    [50] Saki Sonoda, Saburo Shimizu, Xu-Qiang Shen, Shiro Hara, Hajime Okumura, "Characterization of Polarity of Wurtzite GaN Film Grown by Molecular Beam Epitaxy Using NH3", Jpn. J. Appl. Phys. 39 L202 (2000).
    [51] R. Fornari, M. Bosi, D. Bersani, G. Attolini, P. P. Lottici, C. Pelosi, "Characterization of HVPE GaN Layers by Atomic Force Microscopy and Raman Spectroscopy", Semicond. Sci. Technol. 16 776 (2001).
    [52] H. Tsuchiya, F. Hasegawa, H. Okumura, S. Yoshida, "Comparison of Hydride Vapor Phase Epitaxy of GaN Layers on Cubic GaN/(100)GaAs and Hexagonal GaN/(111)GaAs Substrates", Jpn. J. Appl. Phys. 33 6448 (1994).
    [53] Y. Kida, T. Shibata, H. Miyake, K. Hiramatau, "Metalorganic Vapor Phase Epitaxy Growth and Study of Stress in AlGaN Using Epitaxial AlN as Underlying Layer", Jpn. J. Appl. Phys. 42 L572 (2003).
    [54] J. C. Zhang, D. G. Zhao, J. F. Wang, Y. T. Wang, J. Chen, J. P. Liu, H. Yang, "The Influence of AlN Buffer Layer Thickness on The Properties of GaN Epilayer", J. Crystal Growth 268 24 (2004).
    [55] Lord Raylaid, "On Wave Propagation Along the Plane Surface of An Elastic Solid", Proc. London Math. Soc 7 4 (1885).
    [56] R. M. Whit, F. W. Voltmer, "Direct Piezoelectric Coupling to Surface Elastic Waves", Appl. Phys. Lett. 17 314 (1965).
    [57] E. W. Park, "A theory of Surface Acoustic Wave (SAW) Filter", Kieeme. 13 7 8 (2000).
    [58] B. Mathias, J. P. Remeika, "Dielectric Properties of Sodium and Potassium Niobates", Phys. Rev. 82 727 (1951).
    [59] K. Yamanouchi, T. Meguro, Y. Wagatsuma, H. Odagawa, K. Yamamoto, "Nanometer Electrode Fabrication Technology Using Anodic Oxidation Resist and Application to Unidirectional Surface Acoustic Wave Transducers", Jpn. J. Appl. Phys. Part 1 33 (1994).
    [60] C. Deger, E. Born, H. Angerer, O. Ambacher, M.Stutzmann, J. Hornsteiner, E. Riha, G. Fischerauer, "Sound Velocity of AlxGa1-xN Thin Films Obtained by Surface Acoustic Wave Measurement", Appl. Phys. Lett. 72 2400 (1998).
    [61] H. Okano, N. Tanaka, Y. Takhashi, T. Tanaka, K. Shibata, S. Nakano, "Preparation of Aluminum Nitride Thin Films by Reactive Sputtering and Their Applications to GHz-band Surface Acoustic Wave Devices", Appl. Phys. Lett. 64 166 (1994).
    [62] K. Higaki, H. Nakahata, H. Kitabayashi, S. Fujii, K. Tanabe, Y. Seki, S. Shikrar, "High Power Durability of Diamond Surface Acoustic Wave Filter", IEEE Trans. Ultranson. Feerroelect. Freq. Control 44 1395 (1997).
    [63] P. B. Mirkarimi, K. F. McMarty, D. L. Medlin, "Review of Advances in Cubic Boron Nitride Film Synthesis", Mater. Sci. Eng. R21 47 (1997).
    [64] J. H. Edgar, D. T. Smith, C. R. Eddy, Jr., C. A. Carosella, B. D. Sartwell, "C-Boron–Aluminum Nitride Alloys Prepared by Ion-beam Assisted Deposition", Thin Solid Films 298 33 (1997).
    [65] P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, D. C. Dibble, and W. M. Clift, "The Synthesis, Characterization, and Mechanical Properties of Thick, Ultrahard Cubic Boron Nitride Films Deposited by Ion-Assisted Sputtering", J. Appl. Phys. 82 1617 (1997).
    [66] V. Mortet, "Surface Acoustic Wave Propagation in Aluminum Nitride-unpolished Freestanding Diamond Structures", Appl. Phys. Lett. 81 1720 (2002).
    [67] J. A. Kovacich, J. kasperkiewicz, D. Lichtman, C.R. Aita, "Auger Electron and X‐ray Photoelectron Spectroscopy of Sputter Deposited Aluminum Nitride", J. Appl. Phys. 55 2935 (1984).
    [68] J. Chastain, Handbook of X-ray Photoelectron Spectroscopy.
    [69] G. M. Ingo, G. Padeletti, "X-ray Photoelectron Spectroscopy and Secondary-ion Mass Spectrometry of Boron Nitride Thin Films on Austenitic Stainless Steel", Thin Solid Films 228 276 (1993).
    [70] M. Witthaut, R. Cremer, D. Neuschiitz, "Electron Spectroscopy of Single-phase BxAl1-xNy Films", Surf. Interf. Anal. 30 580 (2000).
    [71] D. N. Hendrickson, J. M. Hollsnder, W. L. Jolly, "Core-electron Binding Energies for Compounds of Boron, Carbon, and Chromium", Inorg. Chem. 9 612 (1970).
    [72] S. Kohiki, T. Ohmura, K. Kusao, "Appraisal of New Charge Correction Method in X-ray Photoelectron Spectroscopy", J. Electron Spectrosc. Relat. Phenom. 31 85 (1983).
    [73] B. H. Hwang, C. S. Chen, H. Y. Lu, T. C. Hsu, "Growth Mechanism of Reactively Sputtered Aluminum Nitride Thin Films", Mater. Sci. Eng. A 325 380 (2002).
    [74] W. J. Liu, S. J. Wu, C. M. Chen, Y. C. Lai, C. H. Chuang, "Microstructural Evolution and Formation of Highly C-axis-oriented Aluminum Nitride Films by Reactively Magnetron Sputtering Deposition", J. Crystal Growth 276 525 (2005).
    [75] J. H. Choi, J. Y. Lee, J. H. Kim, "Phase Evolution in Aluminum Nitride Thin Films on Si (100) Prepared by Radio Frequency Magnetron Sputtering", Thin Solid Films 384 166 (2001).
    [76] H. C. Kang, D. Y. Noh, "Interfacial structure of oxidized AlN(0002)/Si(111) thin film", J Appl. Phys. 98 004908 (2005).
    [77] Yoshitaka Taniyasu, Makoto Kasu, "MOVPE Growth of Single-crystal Hexagonal AlN on Cubic Diamond", J. Crystal Growth 311 2825 (2009).
    [78] E. Coutinho, T. Jarmar, F. Svahn, A.A. Neves, B. Verlinden, B. Van Meerbeek, H. Engqvist, "Ultrastructural characterization of tooth–biomaterial interfaces prepared with broad and focused ion beams", Dental Materials 25 1325 (2009).
    [79] Terence S. Yeoh, John A. Chaney, Martin S. Leung, Neil A. Ives, Z. D. Feinberg, James G. Ho, Jianguo Wen, "Three-dimensional failure analysis of high power semiconductor laser diodes operated in vacuum", J. Appl. Phys. 102 123104 (2007).
    [80] H. Bei, S. Shim, M. K. Miller, G. M. Pharr, E. P. George, " Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal", Appl. Phys. Lett. 91 111915 (2007).
    [81] Z. Q. Yao, Q. Ye, Y. Q. Li, Y. S. Zou, W. J. Zhang, S. T. Lee, "Microstructure Analysis of C-axis Oriented Aluminum Nitride Thin Films by High-resolution Transmission Electron Microscopy", Appl. Phys. Lett. 90 121907 (1965).
    [82] G. L. Huffman, D.E. Fahnline, R. Messier, L.J. Pilione, "Stress Dependence of Reactively Sputtered Aluminum Nitride Thin Films on Sputtering Parameters", J. Vac. Sci. Technol. A 7 2252 (1989).
    [83] M. B. Assouar, O. Elmazria, P. Kirsch, P. Alnot, V. Mortet, C. Tiusan, "High-frequency Surface Acoustic Wave Devices Based on AlN/diamond Layered Structure Realized Using E-beam Lithography", J. Appl. Phys. 101 114507 (2007).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE