簡易檢索 / 詳目顯示

研究生: 黃于庭
Huang, Yu-Ting
論文名稱: 台南地區土壤液化評估方法適用性之研究
Suitability Study of Soil Liquefaction Evaluation Methods in Tainan Area
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 151
中文關鍵詞: 美濃地震土壤液化標準貫入試驗液化潛能評估液化潛能指數
外文關鍵詞: Meinong earthquake, liquefaction, SPT, liquefaction potential evaluation, liquefaction potential index
相關次數: 點閱:222下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試以美濃地震之液化案例量化及比較各簡易評估法之之差異性,因各簡易評估法有其特有之發展背景與考量因子,對於相同土層之液化潛能評估卻不盡相同,藉此一研究,探討現行土壤液化評估方法之適用性,希望能夠建立一與本案例狀況相符合之液化評估法。
    本研究使用七種SPT-N值土壤液化簡易評估法及一種剪力波速簡易評估法,分別為HBF法、NCEER法、AIJ法、NJRA法、JRA法、T-Y法、CBC法及A-S法,其中之剪力波速分析法僅用來比較SPT-N法與剪力波速法在台南市區之差異,而SPT-N法之土壤液化潛能資料建立,用於比較其結果在台南市區之差異性、準確性以及可修正性,並且以此研究之土壤數據,提供在日本法規中,以NJRA法為例,考量之D50及D10參數,在未使用下之影響。
    研究結果顯示,HBF法、NCEER法、NJRA法、T-Y法的液化潛勢結果較接近,較為保守,其中NJRA法之中高潛勢鑽孔比例高達83.6%,另外以平均誤差之結果來看,T-Y法與NCEER法之結果較為接近HBF法。以美濃地震液化表徵回推結果, NJRA法在台南市區之評估結果最為合適,準確率達25%,而AIJ法、JRA法及CBC法所評估之結果偏於不保守。而針對深度加權法之修正,在HBF法、NJRA法、NCEER法及T-Y法中,修正安全係數門檻值須調整至1.1~1.2,而修正中高液化潛勢門檻值須調整至7~10為佳。

    The purpose of this article is to present the difference of each result on evaluating liquefaction potential while using seven SPT-N value-based methods. There are HBF (2012), NCEER (1997), AIJ (2001), NJRA (2012), JRA (1990), T-Y (1983), and China (2010). The total of 312 soil profiles have been used to assess the liquefaction potential index with each method, and to calculate error using HBF-based with other methods. Moreover, the accuracy of each methods with liquefied sites and non-liquefied sites were also been evaluated in this study. Based on the accuracy of Tainan area, liquefaction damage assessment established by Iwasaki (1984) has been revised in the article.
    From the results of PL show that the PL values of HBF, NCEER, NJRA, and T-Y methods are similar, and the percentage of medium-high potential borehole with NJRA is the highest, 83.6%. For error analysis, the results of average error with T-Y and NCEER methods are closed to HBF method. Also, the average error of both are less than 20%. In the accuracy evaluation part, the highest accuracy 25% is NJRA method in liquefaction case. For the revising part, there is a corrective value in each method with different condition discussed in this article.

    摘要 I Extended Abstract II 誌謝 IX 目錄 XI 圖目錄 XV 表目錄 XIX 第一章 緒論 1 1.1研究背景與目的 1 1.2研究方法 2 1.3論文內容 2 第二章 土壤液化相關文獻及理論 5 2.1土壤液化概述 5 2.1.1 土壤液化之定義 5 2.1.2土壤液化機制 6 2.2影響土壤液化之因素 9 2.2.1發生振動之外力特性 10 2.2.2土壤顆粒結構特性 12 2.2.3土壤密度狀況 18 2.2.4細粒料特性 23 2.2.5地下水狀況 26 2.2.6試驗對計算液化阻抗之影響 28 2.3 SPT-N值法土壤液化簡易評估 29 2.3.1雙曲線函數(HBF)簡易評估法(2012) 31 2.3.2美國國家地震中心(NCEER)簡易評估法(2001) 34 2.3.3日本建築學會(AIJ)簡易評估法(2001) 36 2.3.4新日本道路協會(NJRA)簡易評估法(2012) 39 2.3.5 Tokimatsu與Yoshimi (T-Y)簡易評估法(1983) 42 2.3.6日本道路協會(JRA)簡易評估法(1990) 43 2.3.7中國建築規範(CBC)簡易評估法(2010) 45 2.4 剪力波速法土壤液化評估 56 2.5 液化損害評估 58 2.5.1 Iwasaki深度加權法 59 2.5.2中國液化指數對應關係 61 2.6液化潛能本土適用性之研究 62 第三章 個案分析 65 3.1研究範圍 65 3.2 美濃地震資料 65 3.3臺南區域地質環境概況 68 3.4鑽孔位置及坐標 71 3.5臺南液化表徵點位資料 71 3.6評估液化潛能參數決定 73 3.6.1地盤分類 73 3.6.2設計地震 75 3.6.3鑽桿能量效率 81 3.6.4分析地下水位 81 3.7液化分析試算表建置 83 3.7.1使用介面 83 3.7.2細節資料處理 94 第四章 分析結果與討論 99 4.1各分析方法評估液化潛能指數結果 99 4.2誤差分析 106 4.2.1誤差分析方法 106 4.2.2誤差評估結果 107 4.3 NJRA法中有無考量D50及D10影響差異 112 4.3.1未考量D50及D10之評估方式 112 4.3.2評估結果 114 4.4以剪力波速法評估液化潛能 116 4.4.1評估方法 116 4.4.2評估結果討論 117 4.5以液化表徵判斷各方法準確率 121 4.5.1評估方式 122 4.5.2評估結果 123 4.5.3準確率之影響因子 125 4.6以液化表徵修正Iwasaki深度加權法 127 4.6.1修正安全係數門檻值 128 4.6.2修正深度權重係數 131 4.6.3修正液化潛勢門檻 136 4.6.4以累積百分率修正液化潛勢分類門檻值 137 4.6.5小結 138 第五章 結論與建議 141 5.1結論 141 5.2建議 143 參考文獻 145

    [ 1 ]中國建築抗震設計規範(GB50011-2010)。
    [ 2 ]中央地質調查所(2005),「新竹、苗栗與台南都會區地下地質與工程環境調查研究-臺南都會區」,都會區地下地質與工程環境調查計畫。
    [ 3 ]日本建築學會(2001),建築基礎構造設計指針。
    [ 4 ]日本道路協會(2012),道路橋示方書‧同解說,V耐震設計篇。
    [ 5 ]內政部(2011),建築物耐震設計規範及解說,第2-1至2-47頁。
    [ 6 ]內政部(2001),建築技術規則建築構造編,建築物基礎構造設計規範含解說,第10-1至10-16頁。
    [ 7 ]內政部(2018),建築技術規則修正草案。
    [ 8 ]台南市政府工務局(2018),「土壤液化潛能報告書」。
    [ 9 ]台南市政府工務局(2018),台南市中級土壤液化潛勢地圖第一期建置暨地質改善委託技術服務現場調查成果報告書。
    [ 10 ]交通部中央氣象局網頁,地震活動彙整。
    [ 11 ]李咸亨、吳志明、郭政彥(2001),「本土液化評估方法之探討」,八十九學年度集集地震土壤液化總評估研究,2001年土壤液化評估在大地工程上之應用研討會論文集。
    [ 12 ]林世元(1999),「台南七股地區民國80年發生液化位置之調查分析」,國立成功大學土木工程研究所碩士論文。
    [ 13 ]林炳森(2000),「九二一集集大地震南投市液化初步調查研究」,國家地震工程研究中心委託計畫,期初報告。
    [ 14 ]吳偉特(1979),「台灣地區砂性土壤液化潛能之初步分析」,土木水利,第六卷,第二期,第39至70頁。
    [ 15 ]吳偉特及楊騰芳(1987),「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59至74頁。
    [ 16 ]范恩碩(2004),「以九二一集集地震案例探討細廖對液化潛能評估之影響」,國立成功大學土木工程研究所博士論文。
    [ 17 ]倪勝火(1999),「現場土層液化評估法」。
    [ 18 ]張睦雄、許榕益(2001),「彰化地區土壤液化潛能評估與潛能圖繪製」, 國家地震工程研究中心研究報告。
    [ 19 ]郭治平、張睦雄、許榕益、蕭士慧(2003),「Iwasaki 液化潛能指數 PL本土化之探討」,第10屆大地工程研討會論文。
    [ 20 ]陳銘鴻、陳景文、李維峰、王志榮、辜炳寰,「簡易液化評估方法之修正與微分區應用」(2002)。
    [ 21 ]國家地震工程研究中心(2016),「0206美濃地震震源與強地動分析」。
    [ 22 ]國家實驗研究院(2017),「NCREE液化評估程式第三版與說明」,國家地震工程研究中心。
    [ 23 ]國家地震工程研究中心(2017),「美濃地震臺南地區土壤液化與地工災害之踏勘調查」。
    [ 24 ]黃俊鴻、張吉佐、周功台、余明山、簡文郁、楊志文、方仲欣、曾豊升、王金山、李信毅(2002),「由集集地震液化案例探討化評估方法本土適用性之研究」,交通部台灣區國道新建工程局。
    [ 25 ]黃俊鴻(2012),「本土HBF土壤液化評估法之不確定性」,地工技術雜誌,第133期,第77至86頁。
    [ 26 ]溫子衡(1998),「不同酸鹼性孔隙介質對砂性土壤動力特性影響之研究」,國立海洋大學河海工程學系碩士論文。
    [ 27 ]褚炳麟、徐松圻、賴聖耀(2000),「九二一大地震霧峰地區土壤液化潛能評估」,國家地震工程研究中心委託計畫。
    [ 28 ]劉志偉(2011),「建築抗震設計規範—新就規範液化判別方法的比較」,廣東交通職業技術學院學報,第10卷,第2期,第11至13頁。
    [ 29 ]簡顯光、錢榮芳(2007),「SPT-N 法於中西部平原土壤液化潛能評估之適用性」,第12屆大地工程研討會論文。
    [ 30 ]饒瑞鈞(2016),「在美濃地震震後科學調查」。
    [ 31 ]Andrus, R. D., and Stokoe, II, K. H. (2000). “A Liquefaction Evaluation Procedure Based on Shear Waze Velocity.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 11, pp. 1015-1025.
    [ 32 ]Casagrande, A. (1936). “The Determination of the Pre-Consolidation Load and its Practical Significance.” Proceedings of the International Conferenceon Soil Mechanics and Foundation Engineering, pp. 60-64.
    [ 33 ]Das, B. M., and Ramana, G.V. (2010). Principles of Soil Dynamics. C. L. Engineering, Second Edition, pp. 398-455.
    [ 34 ]Ishibashi, I., Sherif, M. A., and Cheng, W. L. (1982). “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction.” Soil and Foundations, Vol. 22, No. 1, pp. 39-48.
    [ 35 ]Ishihara, K., and Okada, S. (1978) “Yielding of Overconsolidated Sand and Liquefaction Model Under Cyclic Stresses.” Soils and Foundations, Vol.18, No.1, pp.57-72.
    [ 36 ]Ishihara, K., Sodekawa, M., and Tanaka, Y. (1978). “Effects of Overconsolidation on Liquefaction Characteristics of Sands Containing Fines.” Dynamic Geotechnical Testing, STP 35680S, ASTM, pp. 246-264.
    [ 37 ]Ishihara, K., and Takatsu, H. (1979). “Effects of Overconsolidation and Ko Conditions on the Liquefaction.” Soils and Foundations, Vol. 19, No. 4, pp. 59-68.
    [ 38 ]Ishihara, K. (1985). “Stability of natural deposits during earthquakes.” Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376.
    [ 39 ]Ishihara, K., and Koseki, J. (1989). “Discussion on Cyclic Shear Strength of Fines-Containing Sands.” Proceedings, 12th International on Soil Mechanics and Foundation Engineering, pp. 101-106.
    [ 40 ]Ishihara K. (1993). “Liquefaction and Flow Failure During Earthquakes.” Geotechnique, Vol. 43, Issue 3, pp. 351-451.
    [ 41 ]Iwasaki, T., Arakawa, T., and Tokida, K. (1984). ” Simplified procedure for assessing soil liquefaction during earthquakes.” Soil Dynamics and Earthquake Engineering, Vol. 3, No. 1, pp. 49-58.
    [ 42 ]Iwasaki, T. (1986). “Soil liquefaction studies in Japan: State-of-the-art.” Soil Dynamics and Earthquake Engineering, Vol. 5, Issue 1, pp. 2-68.
    [ 43 ]Kishida, H. (1969). “Characteristics Of Liquefied Sands During Mino-Owari, Tohnankai And Fukui Earthquakes.” Soil and Foundations, Vol. 9, Issue 1, pp. 75-92.
    [ 44 ]Kayabali, K. (1996). “Soil Liquefaction Evaluation Using Shear Wave Velocity.” Engineering Geology, Vol. 44, No. 1, pp. 121-127.
    [ 45 ]Kramer, S. L. (1996). Geotechnical Earthquake Engineering, Prentice-Hall International Series in Mechanics, First Edition, pp. 348-422.
    [ 46 ]Lee, K. L., and Fitton, J. A. (1969). “Factors Affecting the Cyclic Loading Strength of Soil.” Vibration Effects of Earthquakes on Soils and Foundations, STP 450, ASTM, pp. 71-96.
    [ 47 ]Mulilis, J. P. (1975). “The Effects of Method of Sample Preparation on the Cyclic Stress- Strain Behavior of Sands.” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center.
    [ 48 ]Robertson, P. K., and Wride, C. E. (1998). “Evaluating Cyclic Liquefaction Potential Using The Cone Penetration Test.” Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 442-459.
    [ 49 ]Sherif, M. A., Tsuchiya, C., and Ishibashi I. (1977). “Saturation Effects on Initial Soil Liquefaction.” Journal of the Geotechnical Engineering Division, ASCE, Issue 8, pp. 914-917.
    [ 50 ]Seed, H. B., and Lee, K. L. (1966). “Liquefaction of Saturated Sands during Cyclic Loading.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM6, pp.105-134.
    [ 51 ]Seed, H. B., and Idriss, I. M. (1971). “Simplified Procedure for Evaluating Soil Liquefaction Potential.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273.
    [ 52 ]Seed, H. B., and Peacock, W. H. (1971). “Test Procedures for Measuring Soil Liquefaction Characteristics.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1099-1119.
    [ 53 ]Seed, H. B. (1976). “Evaluation of Soil Liquefaction Effects on Level Ground During Earthquakes.” State of the Art Report, Preprint of ASCE Annual Convention and Exposition on Liquefaction Problems in Geotechnical Engineering.
    [ 54 ]Seed, H. B. (1979). “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes.” Journal of the Geotechnical Engineering Division, Solar Energy Research Institute Published, GT 2, pp. 201-255.
    [ 55 ]Seed, H. B., Idriss, I. M., and Arango, I. (1983). “Evaluation of Liquefaction Potential Using Field Performance Data.” Journal of Geotechnical Engineering, Vol. 109, Issue 3, pp. 458-482.
    [ 56 ]Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations.” Journal of Geotechnical Engineering, Vol. 111, Issue 12, pp. 1425-1445.
    [ 57 ]Seed, R. B., Cetin, K. O., Moss, R. E. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E., and Faris A. (2003). “Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework.” Proceedings of the 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, Long Beach, CA.
    [ 58 ]Tokimatsu, K., and Yoshimi, Y. (1983). “Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content.” Soils and Foundations, Vol. 23, Issue 4, pp. 56-74.
    [ 59 ]Uyeno, C. K. (1977). “Liquefaction of Ottawa Sand With Fine.” Master Thesis, Unerversity of California, Davis.
    [ 60 ]Xia, H., and Hu, T. (1991). “Effects of Saturation and Back Pressure on Sand Liquefaction.” Journal of Geotechnical Engineering, Vol. 117, Issue 9, pp. 1347-1362.
    [ 61 ]Yoshimi, Y., Tanaka, K., and Tokimatsu, K. (1989). “Liquefaction Resistance of A Partially Saturated Sand.” Soils and Foundations, Vol. 29, Issue 3, pp. 157-162.
    [ 62 ]Yoshimi, Y., Tokimatsu, K., and Yoshinori, H. (1989). “Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples.” Soils and Foundations, Vol. 29, No. 1, pp. 93-104.
    [ 63 ]Youd, T. L., and Idriss, I. M. (2001). “Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, pp. 297-313.

    下載圖示 校內:2020-08-01公開
    校外:2020-08-01公開
    QR CODE