| 研究生: |
黃詩尹 Huang, Shih-Yin |
|---|---|
| 論文名稱: |
鑑定與研究大腸癌起始細胞中半乳糖凝集素-3之交互作用蛋白 Identification and characterization of galectin-3 interacting proteins in colon cancer initiating cells |
| 指導教授: |
張權發
CHANG, CHUAN-FA |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 大腸直腸癌 、癌症起始細胞 、癌症幹細胞 、半乳糖凝集素3 、膜聯蛋白 |
| 外文關鍵詞: | Colorectal cancer, Cancer initiating cells, Galectin-3, Annexin A2, Annexin A13 |
| 相關次數: | 點閱:112 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腸癌在許多國家都擁有相當高的發生率以及死亡率,近年來,由於早期診斷以及治療方法的進步,大腸直腸癌的存活率已經大幅改善。然而治療後的高復發率以及化療藥物的抗藥性仍然迫切的需要被解決。研究發現腫瘤中存在的癌症起始細胞 (cancer initiating cells, CICs or cancer stem cells, CSCs) 與癌症的復發以及抗藥性的產生有高度的相關性。在我們先前的研究中發現,半乳糖凝集素3 (galectin-3, Gal-3) 會參與癌症起始細胞的產生以及癌症幹細胞特性的維持。Gal-3是一種β-半乳糖苷結合蛋白,能夠藉由其C-末端的醣識別結構域(carbohydrate recognition domain, CRD)辨識其他蛋白質上特定的醣鏈結構並產生交互作用,也能夠藉由N-末端直接產生蛋白-蛋白交互作用去參與細胞特性的調控。因此,本篇研究試圖找出Gal-3相互作用蛋白 (Gal-3 interacting proteins) 能夠和Gal-3結合一同去調控癌症起始細胞。首先我們利用anti-Gal-3的免疫沉澱法,去捕獲癌症起始細胞中所有和Gal-3產生交互作用的蛋白,並額外加入Gal-3醣識別抑制劑TD139,去鎖定藉由醣鏈和Gal-3結合的Gal-3相互作用蛋白。以質譜進行分析後,15候選蛋白被辨識為Gal-3聚醣依賴性相互作用蛋白 (Gal-3 glycan-dependent interacting proteins)。其中膜聯蛋白A2與A13 (Annexin A2, ANXA2 and Annexin A13, ANXA13) 被進一步地進行驗證與分析,我們的實驗結果發現當Gal-3的醣識別能力被抑制時,不會改變癌症起始細胞中Gal-3、ANXA2及ANXA13的表現量,然而卻使Gal-3從細胞質被轉運到細胞膜的數量下降,這造成Gal-3在細胞膜上和ANXA2及ANXA13的交互作用減少。我們同時觀察到癌症起始細胞的生成速率及細胞大小會被Gal-3醣識別抑制劑所抑制,而調控細胞生長的Src-dependent Akt / Erk 信號通路也會被抑制。根據以上的研究結果,我們認為ANXA2及ANXA13會藉由聚醣依賴性相互作用參與Gal-3的細胞膜轉運; 同時,ANXA2及ANXA13與Gal-3之間的交互作用能藉由Src-dependent Akt / Erk 信號通路來參與癌症起始細胞的生成與幹細胞特性的維持。因此針對Gal-3交互作用的抑制或許可以做為大腸直腸癌的潛在治療方法。
Colorectal cancer (CRC) is the third most frequent cancers with high incidence rate reported in many countries. Recent years, CRC survival rate is improved due to advances in diagnosis and treatment. However, drug resistance and tumor recurrence caused by Colon cancer initiating cells (CCICs) are urgent to be solved. In our previous studies, we found galectin-3 (Gal-3) should play very key roles in multidrug-resistant and CCICs properties. Gal-3 is a β-Galactoside-binding protein that interacts with glycoproteins to affect cell properties by either glycan-dependent interaction or protein-protein interaction. In this study, we tried to find Gal-3 glycan-dependent interacting proteins which worked together with Gal-3 by Gal-3 carbohydrate recognition domain (CRD) to regulate CCICs properties. Immunoprecipitation with anti-Gal-3 antibody and further treated with or without TD139, a novel Gal-3 CRD competitive inhibitor, was performed at the first step. The candidate proteins were separated by electrophoresis, visualized by Coomassie blue and then preparation by in-gel digestion for mass spectrometry-based proteomics. Finally, 15 Gal-3 interacting proteins were identified and considered to be involved in the regulation of colorectal cancer initiating cells (CCICs) via Gal-3 carbohydrate recognition activities. Among this, Annexin A2 and Annexin A13 (ANXs) were then verified by co-immunoprecipitation and immunofluorescence and further investigated the function of Gal-3/ANXs glycan-dependent interaction. Inhibition of GAL-3 carbohydrate binding ability not significantly affected the expression of Gal-3, ANXA2, and ANXA13. However, Gal-3 translocation from cytosol to plasma membrane was decreased in a dose-dependent manner, and interaction of p-ANXA2, ANXA2, ANXA13 with Gal-3 on the membrane was decreased. Inhibition of Gal-3/ANXs glycan-dependent interaction also suppressed the colon cancer spheres formation by SRC-mediated signaling. Based on these results, we suggested that Annexin A2 and Annexin A13 may work as Gal-3 glycan-dependent interacting proteins to involve in Gal-3 translocation to the plasma membrane. in addition, Gal-3 glycan-dependent interactions with ANXA2 and ANXA13 regulate CCICs characteristic through Src-dependent Akt / Erk signaling on the plasma membrane and have the potential to establish a novel therapeutic target for colon cancer treatment.
REFERENCE
1. Siegel, R.L., et al., Colorectal cancer statistics, 2017. CA: a cancer journal for clinicians, 2017. 67(3): p. 177-193.
2. Volkova, E., et al., Marginal effects of glucose, insulin and insulin‑like growth factor on chemotherapy response in endothelial and colorectal cancer cells. Oncology letters, 2014. 7(2): p. 311-320.
3. Aghili, M., et al., Clinical and pathological evaluation of patients with early and late recurrence of colorectal cancer. Asia‐Pacific Journal of Clinical Oncology, 2010. 6(1): p. 35-41.
4. Gustavsson, B., et al., A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clinical colorectal cancer, 2015. 14(1): p. 1-10.
5. Anderson, E.C., et al., The role of colorectal cancer stem cells in metastatic disease and therapeutic response. Cancers, 2011. 3(1): p. 319-339.
6. Wang, Y., et al., Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. Journal of clinical oncology, 2004. 22(9): p. 1564-1571.
7. Meyerhardt, J.A., et al., Association of dietary patterns with cancer recurrence and survival in patients with stage III colon cancer. Jama, 2007. 298(7): p. 754-764.
8. Frank, R.E., et al., Tumor angiogenesis as a predictor of recurrence and survival in patients with node-negative colon cancer. Annals of surgery, 1995. 222(6): p. 695.
9. Garza-Treviño, E.N., S.L. Said-Fernández, and H.G. Martínez-Rodríguez, Understanding the colon cancer stem cells and perspectives on treatment. Cancer cell international, 2015. 15(1): p. 2.
10. Dean, M., T. Fojo, and S. Bates, Tumour stem cells and drug resistance. Nature Reviews Cancer, 2005. 5(4): p. 275.
11. Munro, M.J., et al., Cancer stem cells in colorectal cancer: a review. Journal of clinical pathology, 2017: p. jclinpath-2017-204739.
12. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111.
13. O’Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106.
14. Horst, D., et al., The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. The Journal of pathology, 2009. 219(4): p. 427-434.
15. Du, L., et al., CD44 is of functional importance for colorectal cancer stem cells. Clinical cancer research, 2008. 14(21): p. 6751-6760.
16. Nangia-Makker, P., V. Hogan, and A. Raz, Galectin-3 and Cancer Stemness. Glycobiology, 2018.
17. Thijssen, V.L., et al., Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochimica Et Biophysica Acta (BBA)-Reviews on Cancer, 2015. 1855(2): p. 235-247.
18. Califice, S., et al., Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene, 2004. 23(45): p. 7527.
19. Mazurek, N., et al., Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells. Cell death and differentiation, 2012. 19(3): p. 523.
20. Zhao, Q., et al., Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer research, 2009. 69(17): p. 6799-6806.
21. Santos, S.N., et al., O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer. Oncotarget, 2016. 7(50): p. 83570.
22. Yu, F., et al., Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria A role for synexin in galectin-3 translocation. Journal of Biological Chemistry, 2002. 277(18): p. 15819-15827.
23. Stewart, S.E., et al., A genome-wide CRISPR screen reconciles the role of N-linked glycosylation in galectin-3 transport to the cell surface. J Cell Sci, 2017: p. jcs. 206425.
24. Gao, P., et al., Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1β. Respiratory research, 2015. 16(1): p. 5.
25. Silverman, A.M., et al., A galectin-3-dependent pathway upregulates interleukin-6 in the microenvironment of human neuroblastoma. Cancer research, 2012: p. canres. 2165.2011.
26. Piyush, T., et al., Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell death and differentiation, 2017. 24(11): p. 1937.
27. Shimura, T., et al., Galectin-3, a novel binding partner of β-catenin. Cancer research, 2004. 64(18): p. 6363-6367.
28. Shetty, P., et al., Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells. Molecular and cellular biochemistry, 2016. 411(1-2): p. 221-233.
29. Ilmer, M., et al., Cell surface galectin-3 defines a subset of chemoresistant gastrointestinal tumor-initiating cancer cells with heightened stem cell characteristics. Cell death & disease, 2016. 7(8): p. e2337.
30. Chung, L.-Y., et al., Galectin-3 augments tumor initiating property and tumorigenicity of lung cancer through interaction with β-catenin. Oncotarget, 2015. 6(7): p. 4936.
31. Kuo, H.-Y., et al., Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology, 2015. 26(2): p. 155-165.
32. Lee, Y.-K., et al., Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma. PloS one, 2013. 8(11): p. e82478.
33. Fang, C.-Y., et al., Global profiling of histone modifications in the polyomavirus BK virion minichromosome. Virology, 2015. 483: p. 1-12.
34. Lin, T.-W., et al., Galectin-3 binding protein and galectin-1 interaction in breast cancer cell aggregation and metastasis. Journal of the American Chemical Society, 2015. 137(30): p. 9685-9693.
35. Muramatsu, T., Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. The Journal of Biochemistry, 2015. 159(5): p. 481-490.
36. Mauris, J., et al., Molecular basis for MMP9 induction and disruption of epithelial cell-cell contacts by galectin-3. J Cell Sci, 2014: p. jcs. 148510.
37. Chen, C.-Y., et al., Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma. Journal of biomedical science, 2018. 25(1): p. 30.
38. Lokman, N.A., et al., The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenvironment, 2011. 4(2): p. 199-208.
39. Deng, S., et al., Annexin A1, A2, A4 and A5 play important roles in breast cancer, pancreatic cancer and laryngeal carcinoma, alone and/or synergistically. Oncology letters, 2013. 5(1): p. 107-112.
40. Jiang, G., et al., Annexin A13 promotes tumor cell invasion in vitro and is associated with metastasis in human colorectal cancer. Oncotarget, 2017. 8(13): p. 21663.
41. Elad-Sfadia, G., et al., Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. Journal of Biological Chemistry, 2004. 279(33): p. 34922-34930.
42. Kaufhold, S., H. Garbán, and B. Bonavida, Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication. Journal of Experimental & Clinical Cancer Research, 2016. 35(1): p. 84.
43. Singh, S., et al., EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Molecular cancer, 2012. 11(1): p. 73.
44. Qi, S., et al., HSP27 phosphorylation modulates TRAIL-induced activation of Src-Akt/ERK signaling through interaction with β-arrestin2. Cellular signalling, 2014. 26(3): p. 594-602.
45. Thakur, R., et al., Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Scientific reports, 2015. 5: p. 10194.
46. Zou, J., et al., Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis, 2005. 26(2): p. 309-318.
47. MacKinnon, A.C., et al., Regulation of transforming growth factor-β1–driven lung fibrosis by galectin-3. American journal of respiratory and critical care medicine, 2012. 185(5): p. 537-546.
48. Nishi, Y., et al., Role of galectin-3 in human pulmonary fibrosis. Allergology international, 2007. 56(1): p. 57-65.
49. Pearson, M.A., et al., Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell, 2000. 101(3): p. 259-270.
50. Briggs, M.W. and D.B. Sacks, IQGAP proteins are integral components of cytoskeletal regulation. EMBO reports, 2003. 4(6): p. 571-574.
51. Garry, D.J., Dystrophin-deficient cardiomyopathy. Journal of the American College of Cardiology, 2016. 67(21): p. 2533-2546.
52. Machesky, L. and V.M. Braga, So far, yet so close: α-Catenin dimers help migrating cells get together. J Cell Biol, 2017. 216(11): p. 3437-3439.
53. Clucas, J. and F. Valderrama, ERM proteins in cancer progression. J Cell Sci, 2014. 127(2): p. 267-275.
54. Wang, Y., et al., Dystrophin is a tumor suppressor in human cancers with myogenic programs. Nature genetics, 2014. 46(6): p. 601.
55. Noritake, J., et al., IQGAP1: a key regulator of adhesion and migration. Journal of cell science, 2005. 118(10): p. 2085-2092.
56. Rodriguez-Teja, M., et al., Survival outcome and EMT suppression mediated by a lectin domain interaction of Endo180 and CD147. Molecular Cancer Research, 2014: p. molcanres. 0344.2014.
57. Kanekura, T. and X. Chen, CD147/basigin promotes progression of malignant melanoma and other cancers. Journal of dermatological science, 2010. 57(3): p. 149-154.
58. Tominaga, N., et al., RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Molecular cancer, 2014. 13(1): p. 134.
59. Harazono, Y., et al., Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling. Oncotarget, 2015. 6(23): p. 19592.
60. Lakshminarayan, R., et al., Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature cell biology, 2014. 16(6): p. 592.
61. Menon, R.P. and R.C. Hughes, Determinants in the N‐terminal domains of galectin‐3 for secretion by a novel pathway circumventing the endoplasmic reticulum–Golgi complex. European journal of biochemistry, 1999. 264(2): p. 569-576.
62. Hayes, M.J. and S.E. Moss, Annexin 2 has a dual role as regulator and effector of v-Src in cell transformation. Journal of Biological Chemistry, 2009. 284(15): p. 10202-10210.
63. Mussunoor, S. and G. Murray, The role of annexins in tumour development and progression. The Journal of pathology, 2008. 216(2): p. 131-140.
64. Christiansen, M.N., et al., Cell surface protein glycosylation in cancer. Proteomics, 2014. 14(4-5): p. 525-546.
65. Nabeshima, K., et al., Emmprin (basigin/CD147): matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathology international, 2006. 56(7): p. 359-367.
66. Ryan, D., et al., Calnexin, an ER-induced protein, is a prognostic marker and potential therapeutic target in colorectal cancer. Journal of translational medicine, 2016. 14(1): p. 196.
67. Kobayashi, M., et al., Calnexin is a novel sero-diagnostic marker for lung cancer. Lung Cancer, 2015. 90(2): p. 342-345.
68. Cheng, G., et al., Lipopolysaccharide-induced α-catenin downregulation enhances the motility of human colorectal cancer cells in an NF-κB signaling-dependent manner. OncoTargets and therapy, 2016. 9: p. 7563.
69. Metzelaar, M., et al., CD63 antigen. A novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. Journal of Biological Chemistry, 1991. 266(5): p. 3239-3245.
70. Pols, M.S. and J. Klumperman, Trafficking and function of the tetraspanin CD63. Experimental cell research, 2009. 315(9): p. 1584-1592.
71. Stewart, G.D., et al., The dermcidin gene in cancer: role in cachexia, carcinogenesis and tumour cell survival. Current Opinion in Clinical Nutrition & Metabolic Care, 2008. 11(3): p. 208-213.
72. Bancovik, J., et al., Dermcidin exerts its oncogenic effects in breast cancer via modulation of ERBB signaling. BMC cancer, 2015. 15(1): p. 70.
73. Martin, T.A., et al., The role of the CD44/ezrin complex in cancer metastasis. Critical reviews in oncology/hematology, 2003. 46(2): p. 165-186.
74. Fukaya, Y., et al., Identification of galectin-3-binding protein as a factor secreted by tumor cells that stimulates interleukin-6 expression in the bone marrow stroma. Journal of Biological Chemistry, 2008. 283(27): p. 18573-18581.
75. Barrow, H., et al., Serum galectin-2,-4, and-8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clinical cancer research, 2011. 17(22): p. 7035-7046.
76. Satelli, A., et al., Galectin‐4 functions as a tumor suppressor of human colorectal cancer. International journal of cancer, 2011. 129(4): p. 799-809.
77. Goldman, A.J., et al., Chemotherapy-induced Akt survival signaling is regulated by CD44-Ezrin/Radaxin Moesin (ERM) scaffolding, dependent on EGFR activity. 2012, AACR.
78. Carmeci, C., et al., Moesin expression is associated with the estrogen receptor–negative breast cancer phenotype. Surgery, 1998. 124(2): p. 211-217.
79. Abiatari, I., et al., Moesin‐dependent cytoskeleton remodelling is associated with an anaplastic phenotype of pancreatic cancer. Journal of cellular and molecular medicine, 2010. 14(5): p. 1166-1179.
80. Bourguignon, L.Y., et al., Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. Journal of Biological Chemistry, 2005. 280(12): p. 11961-11972.
81. Briggs, M.W., Z. Li, and D.B. Sacks, IQGAP1-mediated stimulation of transcriptional co-activation by β-catenin is modulated by calmodulin. Journal of Biological Chemistry, 2002. 277(9): p. 7453-7465.
82. Sharma, M. and B.R. Henderson, IQ-domain GTPase-activating protein 1 regulates β-catenin at membrane ruffles and its role in macropinocytosis of N-cadherin and adenomatous polyposis coli. Journal of Biological Chemistry, 2007. 282(11): p. 8545-8556.
83. Zeng, F., et al., Ras GTPase-Activating-Like Protein IQGAP1 (IQGAP1) Promotes Breast Cancer Proliferation and Invasion and Correlates with Poor Clinical Outcomes. Medical science monitor: international medical journal of experimental and clinical research, 2018. 24: p. 3315.
84. Nabeshima, K., et al., Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer letters, 2002. 176(1): p. 101-109.
85. Miyoshi, T., et al., Possible mechanism of metastasis in lung adenocarcinomas with a micropapillary pattern. Pathology international, 2005. 55(7): p. 419-424.