| 研究生: |
陳偉科 Chen, Wei-Ko |
|---|---|
| 論文名稱: |
非共振吸收光聚合之『聚合物-液晶』混合薄膜元件光電特性研究 Electro-optical characteristics of PDLC devices polymerized using off-resonant light |
| 指導教授: |
傅永貴
Fuh, Ying-Guey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 聚合物混合液晶薄膜 、單體 、光起始劑 、振幅光柵 、掃描式電子顯微鏡 |
| 外文關鍵詞: | PDLC, monomer, photo-initiator, amplitude grating, SEM |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討利用非共振吸收光源聚合單體形成「聚合物-液晶」混合薄膜之光電特性,並研究利用兩道同調雷射光源所形成之干涉場於樣品內製作全像振幅光柵之特性。主要機制為當聚合光照射於樣品材料時,由於染料(光起始劑)對非共振吸收光的吸收率很低,故聚合光源未於入射樣品後即被強烈吸收,而造成嚴重屏蔽效應,因此有充足之聚合光穿透過另一側基板,這樣的特性足以讓聚合反應由照光面持續到另一側,亦即其聚合結構是均勻且完整延伸至另一面基板。
在光柵的製作中,干涉光強區會造成聚合物濃度較高,以致於會形成PDLC散射態,光弱區為液晶分子的濃度較高,故其為穿透態。實驗結果顯示,利用非共振吸收光源聚合單體形成「聚合物-液晶」光柵,光散射區域(光強區)和光透射區域(光弱區)的分界相當清楚。實驗上所選擇材料之單體濃度亦為相當重要參數,實驗結果發現單體濃度約為19 wt%時可製作出最佳化之全像振幅光柵,其繞射效率可達最高(14.2%),並能穩定最大值(8%)。再將此方法運用在二維全像光柵製作上,同樣可達到與一維全像光柵相同之最佳化結果。另實驗驗證此振幅光柵為一可電控繞射強度光柵,且其繞射效率與偏振無關。除此之外,我們亦利用材料之共振聚合光源製作一維全像振幅光柵,結果與之非共振吸收光及共振吸收光所製作之光柵特性比較,實驗結果顯示利用共振吸收光製成之全像光柵其繞射效率、結構對比度及穩定性皆遠低於由非共振吸收光所製成之全像光柵。
This thesis studies the electro-optical characteristics of the polymer-dispersed liquid crystals (PDLCs) polymerized using off-resonant light. The materials and technique are then applied to fabricate holographic amplitude gratings (HAG). The key concept is based on the low absorbance of the polymerization light. Restated, the incident polymerization light (off-resonant light) cannot be strongly absorbed by the used photo-initiator dyes near the incident surface. Accordingly, it can penetrate the PDLC sample, and is uniformly absorbed across the cell, and thus, produces uniform PDLC structures.
Notably, the contrast between the high-intensity scattered regions (scattered regions) and the low-intensity regions (transparent regions) are sharp in the fabricated holographic amplitude gratings. Moreover, the concentration of the monomer (DPPA) is one of the keys to optimize the holographic amplitude gratings. Experimentally, it is found that the optimum concentration of monomer in the sample compound is ~19 wt%. It gives the maximum and final diffraction efficiencies. This approach can be used to fabricate 2-dimension holographic gratings. Experimentally, the fabricated 1-D and 2-D holographic amplitude gratings are electrically switchable and polarization independent. In addition, it is experimentally demonstrated that the diffraction efficiency, the stability and the contrast of the gratings fabricated using off-resonant polymerization process are much better than those produced by resonant light.
[1] J.L.Fergason, Society for Information Display (SID) International Symposium Digest of Technical Paper 16, 68 (1985).
[2] Andy Y. -G. Fuh, C. -Y.Huang, M.-S. Tasi and J. -M. Chen, Chin. J. Phy. (Taipei) 33, 645 (1995).
[3] Andy Y. -G. Fuh, C.-Y. Huang, M.-S. Tasi and J.-M. Chen and L. -C. Chien, Jpn. J. Appl. Phys. 35, 630 (1996).
[4] Andy Y. -G. Fuh, C. -Y. Huang, B. -W. Tzen, C. -R. Sheu, Y. -N. Chyr, G. -L. Lin and T. -C. Ko, Jpn. J. Appl. Phy. 33, 1088 (1994).
[5] F. Reinitzer, Monatsh. Chem, 9, 421(1888).
[6]松本正一、角田市良合著,劉瑞祥譯,液晶之基礎與應用,國立編譯館出版(1996)。
[7] J. W. M., and G. D. J., ”Anemia detection utilizing diffuse reflectance spectra from the palpebral conjunctiva and tunable liquid crystal filter technology”, SPIE, 6177, 6177C(2006).
[8]朱自強,王仕璠,蘇顯渝,現代光學教程,四川大學出版社, 成都 (1990) 。
[9] Iam-Choon Khoo, “Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena”, John Wiley & Sons Press, New York (1995).
[10] J.W. Doane, A.Vaz, B.-g.Wu and S.Zummer, Appl. Phy. Lett, 48, 269 (1986).
[11] J.West, Mol.Cryst.Liq.Cryst. 157, 427 (1988).
[12] R.L.Sutherland, SPIE proc.1080, 83 (1989).
[13] S. -J. Chang, C –M. Lin and Andy Y.-G. Fuh, Liq. Cryst. 21,19 (1996).
[14] R. Yamaguchi and S. Sato, Jpn. J. Appl. Phys. 31, L254 (1992).
[15] Andy Y.-G. Fuh, M. -S. Tasi, C.-Y. Huang, T. -C. Ko, L. -C. Chien, Opt. Quantum Electron. 28, 1535 (1996).
[16] J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead and B.-G. Wu, Mol. Cryst. and Liq Cryst. 165, 511(1998).
[17] E. Hecht, “Optics”, Addison Wesley, Berlin, (1998).
[18] P. K. Rastogi, “Holographic Interferometry”, 3rd Ed., Springer-Verlag, Berlin,(1985).
[19] P. Hariharan, “Optical Holography—Principles, Techniques and Applications”, Cambridge University Press, Cambridge, (1984).
[20] P. C. Mehta and V. V. Rampal, “Lasers and Holography”, World Scientific, Singapore, (1993).
[21] H. J. Eichler, P. Gűnter and D. W. Pohl, “Laser-Induced Dynamic Gratings”, Pringer-Verlag, Berlin, (1985).
[22] P.Yeh, Introduction to Photorefractive Nonlinear Optics, John Wiley& Sons, New York (1993).
[23] T. J. Bunning, L .V . Natarajan, V. P. Tondiglia, R. L. Sutherland, D. L. Veziet and W. W. Adams, Polymer 36, 14 (1995).