簡易檢索 / 詳目顯示

研究生: 陳俊良
Chen, Chun-Liang
論文名稱: 創傷弧菌MARTX毒素抗吞噬機制之研究
Studies on the mechanism of Vibrio vulnificus MARTX-mediated antiphagocytosis in macrophages
指導教授: 何漣漪
Hor, Lien-I
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 74
中文關鍵詞: 創傷弧菌MARTX毒素抗吞噬作用鈣離子
外文關鍵詞: V. vulnificus, MARTX toxin, antiphagocytosis, Ca2+
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 創傷弧菌生物一型(Vibrio vulnificus biotype 1)是一株能經食物或傷口感染人體且具高度致死率的伺機性革蘭氏陰性病原菌,感染後能快速造成敗血症及出血性皮膚壞死等病變。此菌具有多種毒力因子,包括能抑制吞噬作用的MARTX(multi-functional autoprocessing repeats in toxin)細胞毒素。為了進一步了解創傷弧菌生物一型MARTX(MARTXVv1)的抗吞噬機制,我一方面比較創傷弧菌生物一型野生型菌株YJ016及其rtxA1基因剔除株HL128對小鼠巨噬細胞株RAW264.7之吞噬作用相關特性的影響,另一方面,我將MARTXVv1序列中的特定區域剔除後測試其對於MARTXVv1所導致細胞毒性及抗吞噬作用的影響。我發現MARTXVv1能在YJ016感染7.5至15分鐘內造成RAW264.7細胞中參與吞噬作用之訊息傳遞分子特定位置的磷酸化程度明顯下降,如SFKs Y418 (Src family kinases,包括Lyn、Fgr與Hck)、FAK Y861、Pyk2 Y402、Syk Y525、PI3K p85 Y458及Akt S473等,卻不影響SFKs Y529及已知為toll like receptors (TLRs)下游p38 MAP kinase T180/Y182等位置的磷酸化程度;於15-30分鐘間造成RAW264.7細胞偽足消失、型態改變及F-actin分佈異常;並且在60-90分鐘間明顯導致其細胞硬度下降且導致細胞膜上lipid rafts無法聚集。預先將RAW264.7細胞處理SFKs抑制劑PP2、FAK/Pyk2抑制劑PF431396、PI3K抑制劑LY294002、Akt1/2抑制劑或F-actin抑制劑cytochalasin D後再感染HL128,這些抑制劑都能有效抑制HL128被吞噬,但處理PP2時所造成的結果與MARTXVv1的作用最為相似,顯示MARTXVv1可能透過抑制SFKs及其下游的訊息傳遞路徑來抑制RAW264.7細胞的吞噬作用。另外,我發現MARTXVv1能使RAW264.7細胞內的游離鈣離子濃度上升;加入2.0 mM 鈣離子螯合劑EGTA能抑制MARTXVv1的作用;同時再加入5 mM CaCl2能中和EGTA的作用;預先處理細胞內鈣離子螯合劑BAPTA-AM無法抑制MARTXVv1的作用,顯示細胞外的鈣離子為MARTXVv1功能所必需。我也發現在1.5 mM EGTA的情況下,YJ016的細胞毒性下降至與HL128相似,而抗吞噬作用則不受影響,顯示MARTXVv1可能透過不同機制造成細胞毒性與抗吞噬作用。將MARTXVv1中的ERM區域(ezrin/radixin/moesin domain)及GD -rich區域 (glycine asparagine-rich domain) 剔除能使MARTXVv1所導致的細胞毒性及抗吞噬作用顯著下降至與HL128相似,顯示這兩區域對MARTXVv1功能的重要性。最後,我顯示MARTXVv1對小鼠腹腔巨噬細胞(mPEM)的作用與其對RAW264.7細胞的作用相似。綜合以上,我認為MARTXVv1能在創傷弧菌YJ016感染後與宿主的巨噬細胞作用,抑制SFKs及其下游的訊息傳遞路徑,導致F-actin分佈異常,進而造成細胞變圓及吞噬細菌的能力下降,使該菌不易被清除。

    Biotype 1 Vibrio vulnificus is an opportunistic gram-negative pathogen that causes serious wound infections and fulminant septicemia via ingestion of contaminated seafood, with a high mortality rate in humans. The virulence of biotype 1 V. vulnificus is multifactorial, and the virulence determinants include the MARTX (multi-functional autoprocessing repeats in toxin) cytotoxin that prevents the bacterial cell from engulfment by the phagocytes. To elucidate how the MARTX of biotype 1 V. vulnificus (MARTXVv1) inhibits phagocytosis of the macrophage, I first compared the MARTXVv1-deficient mutant (HL128) with the wild-type strain (YJ016) for a variety of phagocytosis-related properties in a mouse macrophage cell line, RAW264.7. I then deleted single domains in MARTXVv1 and examined their effects on MARTXVv1-mediated cytotoxicity and antiphagocytosis. I found that after 7.5-15 min of infection, MARTXVv1 caused dephosphorylation at specific amino acids of phagocytosis-related kinases, such as SFKs Y418 (Src family kinases that include Lyn, Fgr and Hck), FAK Y861, Pyk2 Y402, PI3 kinase p85 subunit Y458 and Akt S473, but not SFks Y529 and p38-T180/Y182, the downstream effector of the toll-like receptor (TLR). MARTXVv1 caused loss of pseudopodia, cell rounding and F-actin disorganization by 15-30 min of infection. At 60-90 min of YJ016 infection the cell rigidity decreased and coalesce of lipid rafts was impaired. Pretreatment of RAW264.7 cells with PP2 (SFKs inhibitor), PF431396 (FAK/Pyk2 inhibitor), LY294002 (PI3K inhibitor), Akt1/2 inhibitor and cytochalasin D (F-actin inhibitor) inhibited the engulfment of HL128 by RAW264.7 cells. The effects of PP2 were similar to MARTXVv1, which suggested that MARTXVv1 might inhibit the phagocytosis of RAW264.7 cells by causing dephosphorylation of the SFKs-mediated signaling pathway. In addition, MARTXVv1 caused the level of intracellular Ca2+ to increase; treatment with 2.0 mM EGTA (a Ca2+ chelator) inhibited the effects of MARTXVv1, and this inhibition was abolished in the presence of 5 mM CaCl2 at the same time. In contrast, pretreatment with BAPTA-AM (an intracellular Ca2+ chelator) did not inhibit the functions of MARTXVv1, indicating that the extracellular Ca2+ level was essential for the functions of MARTXVv1. Moreover, treatment with 1.5 mM EGTA caused MARTXVv1-mediated cytotoxicity to decrease, but the antiphagocytosis activity remained, suggesting that MARTXVv1 might exert cytotoxicity and antiphagocytosis by different mechanisms. The deletion of ezrin/radixin/moesin domain (ERM) and glycine asparagine (GD)-rich domain caused decrease of the MARTXVv1-mediated cytotoxicity and antiphagocytosis to the HL128 level, which indicated that both the ERM and GD-rich domains are important for the functions of MARTXVv1. Finally, I demonstrated that the effects of MARTXVv1 on RAW264.7 cells and mouse peritoneal exudate macrophages were similar. Taken together, I propose that the interaction of released MARTXVv1 with macrophage during V. vulnificus infection may cause dephosphorylation of SFKs-dependent signaling pathway, which in turn results in F-actin disorganization and, consequently, cell rounding as well as impaired engulfment of bacteria.

    中文摘要 i Abstract ii Acknowledgements iii Table of contents iv List of tables vii List of figures viii Abbreviations x Introduction 1 Vibrio vulnificus 1 RTX toxins 2 MARTX toxin in V. vulnificus 3 Phagocytosis 4 Src family kinases 5 FAK/Pyk2 6 PI3K-Akt 6 TLRs-p38 MAP kinase 7 Antiphagocytosis mechanism 8 Objectives 10 Materials and methods 11 Cell lines, bacteria, antibiotics, medium and kinase inhibitors 11 Genomic DNA isolation 11 Plasmid DNA isolation 12 Polymerase chain reaction (PCR) 13 DNA clean up and gel extraction 13 Restriction enzyme digestion 14 Dephosphorylation of 5’-ends of DNA 14 DNA ligation 15 Heat-shock transformation and competent cells preparation 15 Conjugation 16 Isolation of MARTXVv1 domain deletion mutants 16 Isolation of mouse peritoneal exudate macrophages (mPEMs) 17 Cytotoxicity assay 18 Phagocytosis assay 18 Cell rigidity assay 19 Intracellular free calcium level analysis 20 Immunoblotting 20 Immunoprecipitation 21 Immunofluorescence microscopy 22 Expression and purification of His6-tagged fusion proteins 22 Antisera preparation 24 Statistical analyses 24 Ethics statement 25 Results 26 Effects of MARTXVv1 on phosphorylation levels of SFKs, FAK, Pyk2, PI3K, Akt and p38 kinase. 26 Effects of MARTXVv1 on coalesce of lipid raft in the macrophages. 28 Effects of inhibitors of SFKs, FAK, Pyk2, PI3K, Akt and F-actin on phagocytosis of MARTXVv1-deficient mutant. 28 Effects of calcium chelator on MARTXVv1-mediated cytotoxicity and antiphagocytosis. 29 Effect of MARTXVv1 on intracellular free Ca2+ level of macrophages. 31 Modular structures of the MARTXs of V. cholerae and V. vulnificus strains 32 Involvement of various MARTXVv1 domains in cytotoxicity and antiphagocytosis. 32 Effects of mutant MARTXVv1 proteins on the phosphorylation levels of SFKs, FAK, Pyk2, PI3K, and Akt. 33 Discussion 35 Perspectives 42 References 43 Publications 73

    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4: 499-511

    Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8: 128-140

    Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J (1999) Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol 19: 2338-2350

    Antic I, Biancucci M, Satchell KJ (2014) Cytotoxicity of the Vibrio vulnificus MARTX toxin Effector DUF5 is linked to the C2A Subdomain. Proteins

    Avraham H, Park SY, Schinkmann K, Avraham S (2000) RAFTK/Pyk2-mediated cellular signalling. Cell Signal 12: 123-133

    Baruzzi A, Caveggion E, Berton G (2008) Regulation of phagocyte migration and recruitment by Src-family kinases. Cell Mol Life Sci 65: 2175-2190

    Bauche C, Chenal A, Knapp O, Bodenreider C, Benz R, Chaffotte A, Ladant D (2006) Structural and functional characterization of an essential RTX subdomain of Bordetella pertussis adenylate cyclase toxin. J Biol Chem 281: 16914-16926

    Berton G, Mocsai A, Lowell CA (2005) Src and Syk kinases: key regulators of phagocytic cell activation. Trends Immunol 26: 208-214

    Biosca EG, Amaro C (1996) Toxic and enzymatic activities of Vibrio vulnificus biotype 2 with respect to host specificity. Appl Environ Microbiol 62: 2331-2337

    Bisharat N, Agmon V, Finkelstein R, Raz R, Ben-Dror G, Lerner L, Soboh S, Colodner R, Cameron DN, Wykstra DL, Swerdlow DL, Farmer JJ, 3rd (1999) Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354: 1421-1424

    Boehm DF, Welch RA, Snyder IS (1990a) Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect Immun 58: 1951-1958

    Boehm DF, Welch RA, Snyder IS (1990b) Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect Immun 58: 1959-1964

    Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287: 121-149

    Bruce-Staskal PJ, Weidow CL, Gibson JJ, Bouton AH (2002) Cas, Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake. J Cell Sci 115: 2689-2700

    Calalb MB, Zhang X, Polte TR, Hanks SK (1996) Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem Biophys Res Commun 228: 662-668

    Callies C, Fels J, Liashkovich I, Kliche K, Jeggle P, Kusche-Vihrog K, Oberleithner H (2011) Membrane potential depolarization decreases the stiffness of vascular endothelial cells. J Cell Sci 124: 1936-1942

    Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC (1990) Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem 265: 19704-19711

    Celli J, Olivier M, Finlay BB (2001) Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. Embo J 20: 1245-1258

    Chan TO, Rittenhouse SE, Tsichlis PN (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68: 965-1014

    Chen JY, Tsai PJ, Tai HC, Tsai RL, Chang YT, Wang MC, Chiou YW, Yeh ML, Tang MJ, Lam CF, Shiesh SC, Li YH, Tsai WC, Chou CH, Lin LJ, Wu HL, Tsai YS (2013) Increased aortic stiffness and attenuated lysyl oxidase activity in obesity. Arterioscler Thromb Vasc Biol 33: 839-846

    Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, Chang HC, Tang MJ, Shen MR (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 108: 15225-15230

    Chiang SR, Chuang YC (2003) Vibrio vulnificus infection: clinical manifestations, pathogenesis, and antimicrobial therapy. J Microbiol Immunol Infect 36: 81-88

    Chien SC (2011) Studies on export of Vibrio vulnificus RTX cytotoxin and location of this toxin in host cell. Department of Microbiology and Immunology, College of Medicine, National Cheng-Kung University Master Thesis

    Cipolla L, Consonni A, Guidetti G, Canobbio I, Okigaki M, Falasca M, Ciraolo E, Hirsch E, Balduini C, Torti M (2013) The proline-rich tyrosine kinase Pyk2 regulates platelet integrin aIIbb3 outside-in signaling. J Thromb Haemost 11: 345-356

    Coote JG (1992) Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria. FEMS Microbiol Rev 8: 137-161

    Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694: 149-161

    DePaola A, Capers GM, Alexander D (1994) Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf Coast. Appl Environ Microbiol 60: 984-988

    do Nascimento SM, dos Fernandes Vieira RH, Theophilo GN, Dos Prazeres Rodrigues D, Vieira GH (2001) Vibrio vulnificus as a health hazard for shrimp consumers. Rev Inst Med Trop Sao Paulo 43: 263-266

    Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA (1998) PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of avb3 integrin, and phosphorylated by src kinase. J Clin Invest 102: 881-892

    Ernst JD (2000) Bacterial inhibition of phagocytosis. Cell Microbiol 2: 379-386

    Fang J, Ding M, Yang L, Liu LZ, Jiang BH (2007) PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal 19: 2487-2497

    Forsberg M, Blomgran R, Lerm M, Sarndahl E, Sebti SM, Hamilton A, Stendahl O, Zheng L (2003) Differential effects of invasion by and phagocytosis of Salmonella typhimurium on apoptosis in human macrophages: potential role of Rho-GTPases and Akt. J Leukoc Biol 74: 620-629

    Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88: 435-437

    Frederick M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J. G. Seidman, John A. Smith, Struhl K (1995) Short Protocols in Molecular Biology. John Wiley & Sons, Inc 3rd edition

    Hannigan MO, Huang CK, Wu DQ (2004) Roles of PI3K in neutrophil function. Curr Top Microbiol Immunol 282: 165-175

    Hlady WG, Klontz KC (1996) The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis 173: 1176-1183

    Hor LI, Chang TT, Wang ST (1999) Survival of Vibrio vulnificus in whole blood from patients with chronic liver diseases: association with phagocytosis by neutrophils and serum ferritin levels. J Infect Dis 179: 275-278

    Hor LI, Gao CT, Wan L (1995) Isolation and Characterization of Vibrio vulnificus Inhabiting the Marine Environment of the Southwestern Area of Taiwan. J Biomed Sci 2: 384-389

    Hu JH, Chernoff K, Pelech S, Krieger C (2003) Protein kinase and protein phosphatase expression in the central nervous system of G93A mSOD over-expressing mice. J Neurochem 85: 422-431

    Janeway CA, Jr., Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197-216

    Jeong HG, Satchell KJ (2012) Additive function of Vibrio vulnificus MARTX(Vv) and VvhA cytolysins promotes rapid growth and epithelial tissue necrosis during intestinal infection. PLoS Pathog 8: e1002581

    Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77: 1723-1733

    Karakelian D, Lear JD, Lally ET, Tanaka JC (1998) Characterization of Actinobacillus actinomycetemcomitans leukotoxin pore formation in HL60 cells. Biochim Biophys Acta 1406: 175-187

    Kim YR, Lee SE, Kang IC, Nam KI, Choy HE, Rhee JH (2013) A bacterial RTX toxin causes programmed necrotic cell death through calcium-mediated mitochondrial dysfunction. J Infect Dis 207: 1406-1415

    Kim YR, Lee SE, Kook H, Yeom JA, Na HS, Kim SY, Chung SS, Choy HE, Rhee JH (2008) Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cell Microbiol 10: 848-862

    Klontz KC, Lieb S, Schreiber M, Janowski HT, Baldy LM, Gunn RA (1988) Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, 1981-1987. Ann Intern Med 109: 318-323

    Kong L, Ge BX (2008) MyD88-independent activation of a novel actin-Cdc42/Rac pathway is required for Toll-like receptor-stimulated phagocytosis. Cell Res 18: 745-755

    Korade-Mirnics Z, Corey SJ (2000) Src kinase-mediated signaling in leukocytes. J Leukoc Biol 68: 603-613

    Krasilnikov MA (2000) Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 65: 59-67

    Kwak JS, Jeong HG, Satchell KJ (2011) Vibrio vulnificus rtxA1 gene recombination generates toxin variants with altered potency during intestinal infection. Proc Natl Acad Sci U S A 108: 1645-1650

    Lee BC, Choi SH, Kim TS (2008a) Vibrio vulnificus RTX toxin plays an important role in the apoptotic death of human intestinal epithelial cells exposed to Vibrio vulnificus. Microbes Infect 10: 1504-1513

    Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim KS, Kim TS, Choi SH (2008b) Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76: 1509-1517

    Lee CT, Pajuelo D, Llorens A, Chen YH, Leiro JM, Padros F, Hor LI, Amaro C (2013) MARTX of Vibrio vulnificus biotype 2 is a virulence and survival factor. Environ Microbiol 15: 419-432

    Lee JH, Kim MW, Kim BS, Kim SM, Lee BC, Kim TS, Choi SH (2007) Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45: 146-152

    Lee JH, Rho JB, Park KJ, Kim CB, Han YS, Choi SH, Lee KH, Park SJ (2004) Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72: 4905-4910

    Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ (1999) Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96: 1071-1076

    Linhartová I, Bumba L, Mašn J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, HejnováHolubová J, Sadílková L, Morová J, Šebo P (2010) RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34: 1076-1112

    Litwin CM, Rayback TW, Skinner J (1996) Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun 64: 2834-2838

    Liu M, Alice AF, Naka H, Crosa JH (2007) The HlyU protein is a positive regulator of rtxA1, a gene responsible for cytotoxicity and virulence in the human pathogen Vibrio vulnificus. Infect Immun 75: 3282-3289

    Lo HR (2010) The role of RTX toxin in Vibrio vulnificus pathogenesis. Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University PhD Thesis

    Lo HR, Lin JH, Chen YH, Chen CL, Shao CP, Lai YC, Hor LI (2011) RTX toxin enhances the survival of Vibrio vulnificus during infection by protecting the organism from phagocytosis. J Infect Dis 203: 1866-1874

    Lovewell RR, Hayes SM, O'Toole GA, Berwin B (2014) Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment. Am J Physiol Lung Cell Mol Physiol 306: L698-707

    Lowell CA (2004) Src-family kinases: rheostats of immune cell signaling. Mol Immunol 41: 631-643

    Ma AD, Metjian A, Bagrodia S, Taylor S, Abrams CS (1998) Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinase g, a Rac guanosine exchange factor, and Rac. Mol Cell Biol 18: 4744-4751

    Marshall JG, Booth JW, Stambolic V, Mak T, Balla T, Schreiber AD, Meyer T, Grinstein S (2001) Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fcg receptor-mediated phagocytosis. J Cell Biol 153: 1369-1380

    Mercurio AM, Rabinovitz I (2001) Towards a mechanistic understanding of tumor invasion--lessons from the a6b4 integrin. Semin Cancer Biol 11: 129-141

    Miliotis MD (1991) Acridine orange stain for determining intracellular enteropathogens in HeLa cells. J Clin Microbiol 29: 830-831

    Pérez ACS, Karst JC, Davi M, Guijarro JI, Ladant D, Chenal A (2010) Characterization of the Regions Involved in the Calcium-Induced Folding of the Intrinsically Disordered RTX Motifs from the Bordetella pertussis Adenylate Cyclase Toxin. J Mol Biol 397: 534-549

    Paranjpye RN, Strom MS (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. Infect Immun 73: 1411-1422

    Park J, Kim SM, Jeong HG, Choi SH (2012) Regulatory characteristics of the Vibrio vulnificus rtxHCA operon encoding a MARTX toxin. J Microbiol 50: 878-881

    Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23: 7906-7909

    Qian Y, Corum L, Meng Q, Blenis J, Zheng JZ, Shi X, Flynn DC, Jiang BH (2004) PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. Am J Physiol Cell Physiol 286: C153-163

    Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70: 556-567

    Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527-532

    Roig FJ, Gonzalez-Candelas F, Amaro C (2011) Domain organization and evolution of multifunctional autoprocessing repeats-in-toxin (MARTX) toxin in Vibrio vulnificus. Appl Environ Microbiol 77: 657-668

    Rose T, Sebo P, Bellalou J, Ladant D (1995) Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 270: 26370-26376

    Roskoski R, Jr. (2004) Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun 324: 1155-1164

    Roskoski R, Jr. (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331: 1-14

    Rosqvist R, Bolin I, Wolf-Watz H (1988) Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun 56: 2139-2143

    Rozalski A (1996) [Cytolysins and homologous proteins produced by gram-negative bacteria. II. Hemolysins of Aeromonas, Serratia, Proteus and Morganella and proteins from gram-negative bacteria related to cytolysins]. Postepy Hig Med Dosw 50: 363-374

    Satchell KJ (2007) MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect Immun 75: 5079-5084

    Schaller MD, Parsons JT (1994) Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 6: 705-710

    Shao CP, Hor LI (2000) Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infect Immun 68: 3569-3573

    Sheahan KL, Cordero CL, Satchell KJ (2004) Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proc Natl Acad Sci U S A 101: 9798-9803

    Sheahan KL, Cordero CL, Satchell KJ (2007) Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. Embo J 26: 2552-2561

    Sheahan KL, Satchell KJ (2007) Inactivation of small Rho GTPases by the multifunctional RTX toxin from Vibrio cholerae. Cell Microbiol 9: 1324-1335

    Shiratsuchi H, Basson MD (2007) Akt2, but not Akt1 or Akt3 mediates pressure-stimulated serum-opsonized latex bead phagocytosis through activating mTOR and p70 S6 kinase. J Cell Biochem 102: 353-367

    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31-39

    Sotomayor-Pérez AC, Ladant D, Chenal A (2011) Calcium-induced folding of intrinsically disordered Repeat-in-Toxin (RTX) motifs via changes of protein charges and oligomerization states. J Biol Chem 286: 16997-17004

    Sotomayor-Pérez AC, Subrini O, Hessel A, Ladant D, Chenal A (2013) Molecular crowding stabilizes both the intrinsically disordered calcium-free state and the folded calcium-bound state of a repeat in toxin (RTX) protein. J Am Chem Soc 135: 11929-11934

    Strom MS, Paranjpye RN (2000) Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2: 177-188

    Stuart LM, Ezekowitz RA (2008) Phagocytosis and comparative innate immunity: learning on the fly. Nat Rev Immunol 8: 131-141

    Tabassam FH, Graham DY, Yamaoka Y (2008) OipA plays a role in Helicobacter pylori-induced focal adhesion kinase activation and cytoskeletal re-organization. Cell Microbiol 10: 1008-1020

    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140: 805-820

    Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13: 513-609

    Thuaud F, Ribeiro N, Nebigil CG, Desaubry L (2013) Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol 20: 316-331

    Tison DL, Nishibuchi M, Greenwood JD, Seidler RJ (1982) Vibrio vulnificus biogroup 2: new biogroup pathogenic for eels. Appl Environ Microbiol 44: 640-646

    Tse KW, Dang-Lawson M, Lee RL, Vong D, Bulic A, Buckbinder L, Gold MR (2009) B cell receptor-induced phosphorylation of Pyk2 and focal adhesion kinase involves integrins and the Rap GTPases and is required for B cell spreading. J Biol Chem 284: 22865-22877

    Usatyuk PV, Fu P, Mohan V, Epshtein Y, Jacobson JR, Gomez-Cambronero J, Wary KK, Bindokas V, Dudek SM, Salgia R, Garcia JG, Natarajan V (2014) Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem 289: 13476-13491

    Uyama N, Iimuro Y, Kawada N, Reynaert H, Suzumura K, Hirano T, Kuroda N, Fujimoto J (2012) Fascin, a novel marker of human hepatic stellate cells, may regulate their proliferation, migration, and collagen gene expression through the FAK-PI3K-Akt pathway. Lab Invest 92: 57-71

    Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, Hondermarck H (2007) Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics 6: 114-124

    Von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R (2000) GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 36: 737-748

    Webster AC, Litwin CM (2000) Cloning and characterization of vuuA, a gene encoding the Vibrio vulnificus ferric vulnibactin receptor. Infect Immun 68: 526-534

    Weichhart T, Saemann MD (2008) The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann Rheum Dis 67 Suppl 3: iii70-74

    Welch RA, Pellett S (1988) Transcriptional organization of the Escherichia coli hemolysin genes. J Bacteriol 170: 1622-1630

    Wennstrom S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M, Jackson T, Claesson-Welsh L, Stephens L (1994) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4: 385-393

    Wu Y, Singh S, Georgescu MM, Birge RB (2005) A role for Mer tyrosine kinase in avb5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118: 539-553

    Yoshida S, Ogawa M, Mizuguchi Y (1985) Relation of capsular materials and colony opacity to virulence of Vibrio vulnificus. Infect Immun 47: 446-451

    Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Curr Protoc Immunol Chapter 14: Unit 14 11

    Zhang Z, Vuori K, Reed JC, Ruoslahti E (1995) The a5b1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci U S A 92: 6161-6165

    Zheng XM, Resnick RJ, Shalloway D (2000) A phosphotyrosine displacement mechanism for activation of Src by PTPa. Embo J 19: 964-978

    Ziolo KJ, Jeong HG, Kwak JS, Yang S, Lavker RM, Satchell KJ (2014) Vibrio vulnificus biotype 3 multifunctional autoprocessing RTX toxin is an adenylate cyclase toxin essential for virulence in mice. Infect Immun 82: 2148-2157

    下載圖示 校內:2017-09-03公開
    校外:2017-09-03公開
    QR CODE