簡易檢索 / 詳目顯示

研究生: 詹皓宇
Chan, Hao-Yu
論文名稱: 氧化鐵奈米粒子於表面增強拉曼散射和光熱轉換效率研究
Investigations on surface enhanced Raman scattering and photothermal conversion of iron oxide nanoparticles
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 111
中文關鍵詞: 表面增強拉曼氧化鐵磁性奈米材料
外文關鍵詞: SERS, iron oxide, magnetic nanocrystal
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來表面增強拉曼散射基板以具有表面電漿共振特性的金屬材料(金或銀)和2D平面結構材料(石墨烯和硫化鉬)為主,而且這些材料也已經有完整且豐富的報導,但是具有表面電子轉移特性的磁性奈米氧化鐵材料卻很少有表面增強拉曼的研究。因此,我們提出一種合成磁性氧化鐵的方法-以聯胺輔助水熱法,使得奈米氧化鐵同時具有磁性與表面電子轉移特性,達到以物理吸附而非共價鍵方式增強拉曼散射。我們將0.5 mM的亞甲基藍(methylene blue)與氧化鐵奈米晶體(nanocrystal)混合,發現混和後亞甲基藍的峰值位移4 cm-1,而且具有447.10/1621.54的高峰值比,也表示著亞甲基藍是以C-S-C垂直吸附於奈米氧化鐵的表面,並且讓表面電子轉移(charge transfer)導致表面增強拉曼散射。此增強效應可以使亞甲基藍在相同濃度下的訊號增強2-3倍,並且利用吸收光譜計算出亞甲基藍吸附於氧化鐵的吸附量,計算出來增強因子(enhancement factor)為103-104。另外,我們利用四種表面帶電染劑與表面帶負電的奈米氧化鐵混和,以及利用亞甲基藍分別與表面修飾正、負電性的聚介電質混和的拉曼增強實驗,證明氧化鐵與亞甲基藍是因為靜電吸附導致表面增強拉曼散射。除此之外,我們發現除了以物理吸附方式增強拉曼外,還有化學鍵結增強拉曼。我們將氧化鐵與多巴胺混和,使氧化鐵表面上的苯三酸或檸檬酸鈉與多巴胺上的烯二醇形成配位基,並且發現在混和四小時後,多巴胺的拉曼訊號有明顯提升,也就是說表面增強拉曼技術可以隨時間監控配位狀況。最後,我們利用奈米氧化鐵的磁導引特性,增加表面增強拉曼散射效應以及拉曼偵測的靈敏度,達到一個有電性選擇的磁控制表面電子轉移增強拉曼散射平台。

    Non-metal surface-enhanced Raman scattering (SERS) has attracted considerable attention due to its new vision on the determination of the surface chemistry from the electron transfer between molecules and non-metal SERS substrate. In comparison to popular plasmonic nanoparticles (Au and Ag) and 2D materials (graphene and MoS2), the development of magnetic iron oxide nanoparticle to achieve SERS of molecules is very useful to manipulate the signal improvement by magnetic concentration under an external magnetic field, but is very limited to be report yet. Thus, we have demonstrated the N2H4-assisted hydrothermal synthesis of very pure Fe3O4 nanocrystals to be capable of the non-covalent surface enhanced Raman scattering of electrostatic attached dye molecules. With mixture of methylene blue (MB) molecule as probe below 0.5 mM, ~ 4 cm-1 hypsochromic shift and high 447.10/1621.54 peak ratio were observed, showing that a vertical plane of C-S-C skeleton structure of MB absorbed on the surface of Fe3O4 nanocrystals and thus evoke the SERS via charge transfer (CT) process. The signal improvement is 2-3 fold increase of intensity with 103-104 of enhancement factor in contrast to the same MB concentration in the bulk solution. Furthermore, the charge selectivity of four dyes to the Fe3O4(-)- and Fe3O4@polyelectrolyte(+)/(-)-based SERS property was determined. In addition to the physisorption, the ligand exchange reaction of Fe3O4@TMA/citrate with endiol group at the dopamine at least 6 h could be in-situ monitor with such Fe3O4-evolved SERS analysis method. Additional examinations with different fraction of Fe3O4 and γ-Fe2O3 nanocrystals resulted in the non-covalent SERS of MB molecules with different absorption orientation. This surface-dependent CT SERS platform with magnetic iron oxide nanocrystals provides additional function of easy separation for improving signal intensity and sensitive to surface chemistry of molecule charges and complex environments.

    中文摘要 I Abstract III 誌謝 V Contents VI List of Figures XI List of Tables XVI Chapter 1 Introduction 1 1.1 Iron oxides 1 1.2 Iron oxide hybrids 2 1.2.1 Iron oxide-gold hybrids 2 1.2.2 Iron oxide-silver hybrids 2 1.2.3 Iron oxide-semiconductor hybrids 3 1.3 Magnetic property and application of Fe3O4 NPs 4 1.3.1 Magnetic property of Fe3O4 NPs 4 1.3.2 Magnetic Resonance contrast agents of Fe3O4 NPs 4 1.3.3 Drug delivery of Fe3O4 5 1.4 Specific optical properties of Fe3O4 NPs 5 1.4.1 Photothermal effect of Fe3O4 NPs 5 1.4.2 Surface-enhanced Raman scattering of Fe3O4 NPs 6 1.4.3 Optical Coherence Tomography of Fe3O4 NPs 6 1.4.4 Photoacoustic image of Fe3O4 NPs 7 1.4.5 Photocatalysis of Fe3O4 NPs 7 1.4.6 Multiphoton nonlinear optics of Fe3O4 NPs 8 1.5 Photothermal effect 8 1.5.1 Introduction of photothermal effect 8 1.5.2 Photothermal conversion efficiency 9 1.5.3 Photothermal therapy 9 1.6 Surface-enhanced Raman scattering 10 1.6.1 Introduction of surface-enhanced Raman scattering 10 1.6.2 Electromagnetic enhancement 11 1.6.3 Chemical enhancement 12 1.6.3.1 CT resonance 13 1.6.3.2 Exciton resonance 14 1.6.4 SERS-active semiconductor materials 15 1.6.4.1 Application of SERS-active semiconductor materials 16 Chapter 2 Motivation 32 Chapter 3 Material and Method 33 3.1 Materials 33 3.2 Equipment 35 3.3 Methods 36 3.3.1 Synthesis of Fe3O4 nanocrystals (Fe3O4 NCs) 36 3.3.2 Layer-by-layer (LBL) surface modification 37 3.3.3 Characterization 38 3.3.3.1 Crystal and size structure 38 3.3.3.2 Magnetism analysis 38 3.3.3.3 Zeta potential and DSL measurement 38 3.3.4 Absorption efficiency 39 3.3.5 Photothermal conversion 39 3.3.6 Raman scattering property measurement 39 3.3.6.1 Raman scattering spectra 39 3.3.6.2 SERS spectra 40 3.3.6.3 Mapping image of SERS spectra 40 3.3.7 Photoelectric properties measurement 41 3.3.7.1 Measurement of CT pathway by 4-point probe 41 3.3.7.2 Measurement of CT pathway by UV-vis spectra 41 3.3.8 In vitro cell toxicity test - MTT assay 41 Chapter 4 Result and Discussion 47 4.1 Synthesis 47 4.1.1 Synthesis of Fe3O4-N2H4 NCs 47 4.1.2 Synthesis of Fe3O4 NCs with different amines 48 4.2 Structure characterization 48 4.3 Optical properties 50 4.3.1 UV-visible spectra of Fe3O4 NCs 50 4.3.2 Photothermal effect of Fe3O4 NCs 51 4.4 SERS measurement 51 4.4.1 SERS properties of MB adsorbed on the Fe3O4-N2H4 NCs 51 4.4.2 Photoelectric properties of Fe3O4 NPs 53 4.4.2.1 Measurement of CT pathway by 4-point probe 53 4.4.2.2 Measurement of CT pathway by UV-vis spectra 53 4.4.3 Fe3O4 NCs synthesized with different concentration of Fe ion 54 4.4.4 SERS measurement of different concentrations of MB adsorbed on Fe3O4 NCs 55 4.4.5 SERS measurement of Fe3O4 NCs with different acquisition time 55 4.4.6 SERS measurement of Fe3O4 NCs with different excitation power 55 4.4.7 Fe3O4 NCs synthesized with different amines 56 4.4.8 The influence of MB adsorption for SERS 57 4.4.9 SERS properties of commercial Fe3O4 nanoparticles (NPs) 58 4.4.10 Electrostatic adsorption enhanced Raman scattering 59 4.4.11 Time-dependent chemical bonding enhanced Raman scattering 61 4.5 Magnetism 62 4.6 Cell viability 63 Chapter 5 Conclusion 101 Reference 103

    [1] O. Veiseh, J. W. Gunn and M. Zhang, Adv Drug Deliv Rev, 2010, 62, 284-304.
    [2] C. C. Huang, P. Y. Chang, C. L. Liu, J. P. Xu, S. P. Wu and W. C. Kuo, Nanoscale, 2015, 7, 12689-12697.
    [3] M. J. Chiu, S. Y. Yang, H. E. Horng, C. C. Yang, T. F. Chen, J. J. Chieh, H. H. Chen, T. C. Chen, C. S. Ho, S. F. Chang, H. C. Liu, C. Y. Hong and H. C. Yang, ACS Chem Neurosci, 2013, 4, 1530-1536.
    [4] M.-C. Hsieh, J.-H. Chen, Y.-F. Tong and S.-H. Liao, Sensors and Actuators A: Physical, 2017, 261, 1-8.
    [5] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem Rev, 2008, 108, 2064-2110
    [6] M. Y. Liao, P. S. Lai, H. P. Yu, H. P. Lin and C. C. Huang, Chem Commun (Camb), 2012, 48, 5319-5321.
    [7] M.-Y. Liao, C.-H. Wu, P.-S. Lai, J. Yu, H.-P. Lin, T.-M. Liu and C.-C. Huang, Advanced Functional Materials, 2013, 23, 2044-2051.
    [8] H. A. Garcia, R. P. de Melo, A. Azevedo and C. B. de Araújo, Applied Physics B, 2013, 111, 313-321.
    [9] M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, M. Miya, Nature 1995, 374, 625-625.
    [10] N. Lee, P. J. Schuck, P. S. Nico and B. Gilbert, J Phys Chem Lett, 2015, 6, 970-974
    [11] J. Kneipp, ACS Nano, 2017, 11, 1136-1141.
    [12] K. Ulbrich, K. Hola, V. Subr, A. Bakandritsos, J. Tucek and R. Zboril, Chem Rev, 2016, 116, 5338-5431.
    [13] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, Nat Nanotechnol, 2007, 2, 577-583.
    [14] Z. Wu, K. Yu, S. Zhang, and Y. Xie, J Phys Chem C, 2008, 112, 11307–11313.
    [15] W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang, M. Swihart, and P. N. Prasad, Nano Lett, 2006, 6, 875-881
    [16] J. Lee, J. Yang, H. Ko, S. Oh, J. Kang, J. Son, K. Lee, S. W. Lee, H. G. Yoon, J. S. Suh, Y. M. Huh and S. Haam, Advanced Functional Materials, 2008, 18, 258-264.
    [17] W. H. Hung, M. Aykol, D. Valley, W. Hou and S. B. Cronin, Nano Lett, 2010, 10, 1314-1318.
    [18] A. Mezni, I. Balti, A. Mlayah, N. Jouini and L. S. Smiri, The Journal of Physical Chemistry C, 2013, 117, 16166-16174.
    [19] P. Gong, H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang and X. Yang, Nanotechnology, 2007, 18, 285604.
    [20] L. Yang, Z. Bao, Y. Wu and J. Liu, Journal of Raman Spectroscopy, 2012, 43, 848-856.
    [21] L. Ai, C. Zeng and Q. Wang, Catalysis Communications, 2011, 14, 68-73.
    [22] Y. Lu, Y. Yin, B. T. Mayers, and Y. Xia, Nano Lett, 2002, 2, 183-186
    [23] L. Cheng, S. Zhang, Y. Wang, G. Ding and Z. Jiao, Materials Research Bulletin, 2016, 73, 77-83.
    [24] Y. Chen, L. Chen, L. Chen and J. Zhang, Particle & Particle Systems Characterization, 2015, 32, 893-898.
    [25] S. Chidambaram, B. Pari,N. Kasi, S. Muthusamy, Journal of Alloys and Compounds, 2016, 665, 404-410
    [26] L. E. Jennings and N. J. Long, Chem Commun (Camb), 2009, DOI: 10.1039/b821903f, 3511-3524.
    [27] H. B. Na, I. C. Song and T. Hyeon, Advanced Materials, 2009, 21, 2133-2148.
    [28] E. Gullotti, and Y. Yeo, Molecular Pharmaceutics, 2009, 6, 1041–1051
    [29] Y. Matsumura, Jpn J Clin Oncol, 2008, 38, 793-802.
    [30] M. Yokoyama, J Artif Organs, 2005, 8, 77-84.
    [31] C. C. Lee, E. R. Gillies, M. E. Fox, S. J. Guillaudeu, J. M. J. F. chet, E. E. Dy, and F. C. Szoka, Proc Natl Acad Sci USA, 2006, 103, 16649 -16654
    [32] K. E. Uhrich, S. M. Cannizzaro, R. S. Langer and K. M. Shakesheff, Chemical Reviews, 1999, 99, 3181-3198.
    [33] E. Soussan, S. Cassel, M. Blanzat and I. Rico-Lattes, Angew Chem Int Ed Engl, 2009, 48, 274-288.
    [34] C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin and S. Sun, Angew Chem Int Ed Engl, 2008, 47, 173-176.
    [35] C. Xu, B.Wang, and S. Sun, J Am Chem Soc, 2009, 131, 4216–4217
    [36] S. Santra, C. Kaittanis, J. Grimm and J. M. Perez, Small, 2009, 5, 1862-1868.
    [37] M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu and D. Shi, Biomaterials, 2013, 34, 4078-4088.
    [38] H. Chen, J. Burnett, F. Zhang, J. Zhang, H. Paholak and D. Sun, J. Mater. Chem. B, 2014, 2, 757-765.
    [39] X. Zhou, W. Xu, Y. Wang, Q. Kuang, Y. Shi, L. Zhong, and Q. Zhang, J Phys Chem C, 2010, 114, 19607–19613
    [40] H. Hu, Z. Wang, L. Pan, S. Zhao, and S. Zhu, J Phys Chem C, 2010, 114, 7738-7742.
    [41] W. Shi, X. Liu, C. Wei, Z. J. Xu, S. S. Sim, L. Liu and C. Xu, Nanoscale, 2015, 7, 17249-17253.
    [42] E. A. Genina, Y. I. Svenskaya, I. Y. Yanina, L. E. Dolotov, N. A. Navolokin, A. N. Bashkatov, G. S. Terentyuk, A. B. Bucharskaya, G. N. Maslyakova, D. A. Gorin, V. V. Tuchin and G. B. Sukhorukov, Biomed Opt Express, 2016, 7, 2082-2087.
    [43] C. Kim, C. Favazza, and L. V. Wang, Chem Rev, 2010, 110, 2756–2782
    [44] L. S. Lin, Z. X. Cong, J. B. Cao, K. M. Ke, Q. L. Peng, J. Gao, H. H.Yang, G. Liu, and X. Chen, ACS Nano, 2014, 8, 3876-3883
    [45] J. Yu, W. Yin, X. Zheng, G. Tian, X. Zhang, T. Bao, X. Dong, Z. Wang, Z. Gu, X. Ma and Y. Zhao, Theranostics, 2015, 5, 931-945.
    [46] I. A. Reyes, F. Patiño, M. U. Flores, J.Narayanan, H. Calderón, and T. Pandiyan, J Mex Chem Soc, 2013, 57, 96-104.
    [47] G. Xi, B. Yue, J. Cao and J. Ye, Chemistry, 2011, 17, 5145-5154.
    [48] J.-F. Guo, B. Ma, A. Yin, K. Fan and W.-L. Dai, Applied Catalysis B: Environmental, 2011, 101, 580-586.
    [49] R. Chalasani and S. Vasudevan, ACS Nano, 2013, 7, 4093-4104
    [50] Y. Wu, L. Zhou, X. Du and Y. Yang, International Journal of Heat and Mass Transfer, 2015, 82, 545-554.
    [51] M. Zheng, P. Zhao, Z. Luo, P. Gong, C. Zheng, P. Zhang, C. Yue, D. Gao, Y. Ma and L. Cai, ACS Appl Mater Interfaces, 2014, 6, 6709-6716.
    [52] H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, Nano Lett, 2009, 9, 1139-1146
    [53] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J Am Chem Soc, 2006, 128, 2115-2120
    [54] P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Accounts of Chemical Research, 2008, 41, 1578-1586
    [55] C. A. Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A.M. Goodman, H. Charron,T. Mitchell, M. Shea, R.Roy, S. Nanda, R.lSchiff, N. J. Halas, and A. Joshi, ACS Nano, 2014, 8, 6372-6381
    [56] M. Fleischmann, P. J. Hendra and A.J. Mcquillan, Chem Phys Lett, 974, 26, 163–166.
    [57] D. L. Jeanmaire and R. P. V. Duyne, J Electroanal Chem, 1977, 84, 1–20
    [58] H. Xu, J. Aizpurua, M. Ka and P. Apell, Phys Rev E, 2000, 62, 4318(7)
    [59] K. 1. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtulus, S. H. Lee, N. C. Lindquist, S. H. Oh and C. L. Haynes, Phys Chem Chem Phys, 2011, 13, 11551-11567.
    [60] M. Shaban and A. R. Galaly, Sci Rep, 2016, 6, 25307.
    [61] W. E. Doering and S. Nie, J Phys Chem B, 2002, 106, 311-317
    [62] D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren and Z. Q. Tian, Chem Commun (Camb), 2011, 47, 2520-2522.
    [63] X. Zhang, Z. Yu, W. Ji, H. Sui, Q. Cong, X. Wang and B. Zhao, The Journal of Physical Chemistry C, 2015, 119, 22439-22444.
    [64] M. Moskovits, Reviews of Modern Physics, 1985, 57, 783-826.
    [65] F. J. Garcı´a-Vidal and J. B. Pendry, Phys Rev Lett, 1996, 77, 1163-1166
    [66] G. Mie, Ann Phys, 1908, 330, 377–445.
    [67] B. J. Messinger, K. U. von Raben, R. K. Chang and P. W. Barber, Physical Review B, 1981, 24, 649-657.
    [68] J. R. Lombardi and R. L. Birke, The Journal of Physical Chemistry C, 2014, 118, 11120-11130.
    [69] A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. V. Duyne, J Phys Chem B, 2005, 109, 11279−11285.
    [70] Z. Liu, L. Bai, G. Zhao and Y. Liu, Beilstein J Nanotechnol, 2016, 7, 1028-1032.
    [71] I. Alessandri, J Am Chem Soc, 2013, 135, 5541-5544.
    [72] S. Hayashi, R. Koh, Y. Ichiyama, and K. Yamamoto, Phys Rev Lett, 1988, 60, 1085–1088
    [73] S. K. Islam, M. Tamargo, R. Moug and J. R. Lombardi, The Journal of Physical Chemistry C, 2013, 117, 23372-23377.
    [74] X. X. Han, W. Ji, B. Zhao and Y. Ozaki, Nanoscale, 2017, 9, 4847-4861.
    [75] J. R. Lombardi and R. L. Birke, Acc Chem Res, 2009, 42, 734–742
    [76] X. Wang, W. Shi, G. She and L. Mu, Phys Chem Chem Phys, 2012, 14, 5891-5901.
    [77] L. Jiang, P. Yin, T. You, H. Wang, X. Lang, L. Guo and S. Yang, Chemphyschem, 2012, 13, 3932-3936.
    [78] X. Ling, L. G. Moura, M. A. Pimenta and J. Zhang, The Journal of Physical Chemistry C, 2012, 116, 25112-25118.
    [79] L. G. Quagliano, J Am Chem Soc, 2004, 126, 7393–7398
    [80] C. B. Mou, T. J. He, X. Y. Wang, F. Z. Liu, J. S. Jiang, L. W. Chen, Acta Phys Chim Sin, 1996, 12, 841–844
    [81] P. Zhang, Y. Wang, T. He, B. Zhang, X. Wang, H. Xin and F.-t. Liu’, Chem Phys Lett, 1988, 153, 215–222
    [82] X. Fu, F. Bei, X. Wang, X. Yang and L. Lu, Materials Letters, 2009, 63, 185-187.
    [83] J. S. Teguh, F. Liu, B. Xing and E. K. Yeow, Chem Asian J, 2012, 7, 975-981.
    [84] X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao and J. R. Lombardi, The Journal of Physical Chemistry C, 2012, 116, 8792-8797.
    [85] S. J. Hurst, H. C. Fry, D. J. Gosztola, and T. Rajh, J Phys Chem C, 2011, 115, 620–630
    [86] Q. Liu, L. Jiang and L. Guo, Small, 2014, 10, 48-51.
    [87] A. Kudelski, W. Grochala, M. Janik-Czachor, Bukowska, A. Szummer and M. Dolata, J Raman Spectrosc, 1998, 29, 431–435
    [88] O. Blajiev, H. Terryn, A. Hubin, L. Soukupova and P. Geerlings, Journal of Raman Spectroscopy, 2006, 37, 777-788.
    [89] C. Mou, D. Chen, X. Wang, B. Zhang, T. He, H. Xin and F. Chen, Spectrochim Acta Part A, 1991, 47, 1575–1581.
    [90] Y. Wang, Z. Sun, Y. Wang, H. Hu, B. Zhao, W. Xu and J. R. Lombardi, Spectrochim Acta A Mol Biomol Spectrosc, 2007, 66, 1199-1203.
    [91] Y. Wang, Z. Sun, H. Hu, S. Jing, B. Zhao, W. Xu, C. Zhao and J. R. Lombardi, Journal of Raman Spectroscopy, 2007, 38, 34-38.
    [92] X. Fu, Y. Pan, X. Wang and J. R. Lombardi, J Chem Phys, 2011, 134, 024707.
    [93] X. Fu, T. Jiang, Q. Zhao and H. Yin, Journal of Raman Spectroscopy, 2012, 43, 1191-1195.
    [94] D. Qi, L. Lu, L. Wang and J. Zhang, J Am Chem Soc, 2014, 136, 9886-9889.
    [95] I. Alessandri and L. E. Depero, Small, 2014, 10, 1294-1298.
    [96] W. Ji, W. Song, I. Tanabe, Y. Wang, B. Zhao and Y. Ozaki, Chem Commun (Camb), 2015, 51, 7641-7644.
    [97] W. Ji, Y. Wang, I. Tanabe, X. Han, B. Zhao and Y. Ozaki, Chem. Sci., 2015, 6, 342-348.
    [98] L. Yang, Xin Jiang, W. Ruan, J. Yang, B. Zhao, W. Xu, and J. R. Lombardi, J Phys Chem C, 2014, 118, 11120–11130.
    [99] A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P.r Nordlander, and N. J. Halas, ACS Nano, 2014, 8, 3222–3231
    [100] M. I. Darab and S. A. Shivashankar, RSC Adv, 2014, 4, 4105–4113
    [101] G. Thomas, F. Demoisson, R. Chassagnon, E. Popova and N. Millot, Nanotechnology, 2016, 27, 135604.
    [102] S. K. Park, N. S Lee, and S. H. Lee, Bull Korean Chem Soc, 2000, 21, 959-968

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE