| 研究生: |
張閔期 Chang, Min-Chi |
|---|---|
| 論文名稱: |
運用多重碎形理論於滾珠螺桿系統之訊號分析 Applocation of Multifractal Theory to the Signal Analysis of Ball-Screw System |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 多重碎形理論 、滾珠螺桿 、訊號分析 |
| 外文關鍵詞: | multifractal theory, ball-screw, failure analysis |
| 相關次數: | 點閱:144 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用多重碎形理論作為訊號分析方法,用以解析高速滾珠螺桿機台運轉之訊號以達到失效分析之目的。利用單一碎形理論中的維度D_s值及高度尺度參數G值能反應出機台運轉時之狀態,但僅藉由此二碎形參數之趨勢變化所能得知的訊息仍屬有限。本文之特點為加入可描述碎形維度在空間或時間中分佈現象的多重碎形理論,以不同之尺度指數區分強弱訊號並顯示碎形維度分佈情形,許多現象便在此分類後再分析的過程顯示。本文之另一特點為運用多重碎形之概念進一步分析高度尺度參數,高度尺度參數原為運用於描述物體表面形貌之起伏,而後亦被運用在訊號分析中,多重碎形理論中並無高度尺度參數或類似之參數,本文嘗試以瞬時高度尺度參數分佈偏度係數作為分析方法,並得到其與能反映出潤滑油脂之溢漏狀況之結果。本文並針對高速滾珠螺桿機台之訊號特性加以分析,說明特定訊號如量測雜訊、球通訊號反應在多重碎形分析之特徵值。本研究之研究方法以建立軟體提供業界使用。
經多重碎形理論分析後,訊號在試件發生擦損前後顯示出明顯的差異,發生擦損後之訊號多重碎形頻譜曲線開口遠寬於發生擦損之前,反應出接觸行為較為不穩定,這是利用單一碎形理論分析時所無法觀察的。針對扭矩及振動訊號之多重碎形分析,在滾珠螺桿之軸承失效故障前確實能反映出異狀,在故障發生前三小時其多重碎形頻譜曲線開口亦越來越寬,反應其訊號越來越不穩定。多重碎形理論有潛力運用於複雜機構之機台之失效分析、預測,機械元件在失效前很可能產生些微的徵兆,並影響各種等訊號,多重碎形理論提供一個跨越尺度的角度來篩選、解析這些徵兆。
In this thesis, we use multifractal theory as a signal processing method to resolve the ball-screw signal to achieve failure analysis. Monofractal and topothesy can reflect the state of running machines, but there is only a few information we could get from those two values. One of the unique of this study is using multifractal theory which characterized the uneven distribution of monofractal in time or space, signal is discriminated by different Hölder exponent and then analyze fractal dimension respectively, some phenomenon was shown during those processes. Another feature of this study is to combine multifractal theory with topothesy. The original function of topothesy is characterizing the undulating of surface topography, then topothesy is used in signal process to represent the amplitude. But there is no topothesy or other similar parameters in multifractal theory, in this study, we analyze the distribution of instantaneous topothesy as a method to failure analysis.
The result of experiments shows huge difference between scuffing and non-scuffing after analyzed by multifractal theory, which can not show in monofractal analysis; multifractal analysis of vibration and torque signal can reflect the condition of ball-bearing failure, those cases show that it is potentially to use multifractal theory to failure analysis. We also describe the character of ball-screw signal, identify how the specific signal such as ball-pass signal and noise show in multifractal spectra.
[1] E. N. Lorenz, 1963, “Deterministic Nonperiodic Flow” Journal of the Atmospheric Sciences, vol.20, pp.130-141.
[2] B. B. Mandelbort, 1982, "The Fractal Geometry of Nature," W. H. Freeman, New York.
[3] 葛世榮、朱華,2005,"摩擦學的分形",機械工業出版社,中國。
[4] G. Zhou, M. Leu and D. Blackmore, 1995, "Fractal Geometry Modeling with Applications in Surface Characterisation and Wear Prediction," International Journal of Machine Tools and Manufacture, vol.35, No.2, pp.203-209.
[5] H. Zhou, S. Ge, X. Cao and W. Tang, 2007 “The Changes of Fractal Dimensions of Frictional Signals in the Running-In Wear Process”, Wear, vol.263, pp.1502–1507.
[6] B. B. Mandelbrot, 1989, “Multifractal Measures, Especially for the Geophysicist”, Pure and Applied Geophysics, vol. 131, pp.5-42
[7] U, Frisch and G, Parisi, 1985, “On the Singularity Structure of Fully Developed Turbulence.” Turbulence and Predictability in Geophysical Fluid Dynamics, Amsterdam, North-Holland.
[8] A. R. Rojas A. M. Diosdado, C. G. P. Miller, and F. A. Brown, 2004, “Spectral and Multifractal Study of Electroseismic Time Series Associated to the Mw=6.5 Earthquake of 24 October 1993 in Mexico” Natural Hazards and Earth System Sciences, vol.4, pp. 703–709.
[9] C. Godano and V. Caruso, 1995, “Multifractal Analysis of Earthquake Catalogues”, Geophysical Journal International , vol.121, pp.385-392.
[10] P.C. Ivanov, N. Amaral, A.L. Golberger, S. Havlin, M.G. Rosenblum, Z.R. Struzik, and H.E. Stanley, 1999 “Multifractality in Human Heartbeat Dynamics”, Nacture,vol.399, pp.461-465.
[11] G. Schmitt and L. Seuront, 2001, “Multifractal Random Walk in Copepod Behavior”, Physica A, vol.301, pp.375–396.
[12] S. J. Loutridis, 2008, “Self-Similarity in Vibration Time Series: Application to Gear Fault Diagnostics” Journal of Vibration and Acoustics, vol. 130, pp.0310041-0310049.
[13] M. H. Benbouzid, 2000, “A Review of Induction Motors Signature Analysis as a Medium for Faults Detection”, IEEE Transactions On Industrial Electronics, vol. 47, No. 5, pp.984-993.
[14] H. Yang , J. Mathew and L. Ma, 2005, “Fault Diagnosis of Rolling Element Bearings Using Basis Pursuit”, Mechanical Systems and Signal Processing, vol.19, pp.341-356.
[15] H. M, Monavar, H. Ahmadi and S.S. Mohtasebi, 2008, “Prediction of Defects in Roller Bearings Using Vibration Signal Analysis”, World Applied Sciences Journal, vol.4, No.1, pp.150-154.
[16] V. K. Rai and A. R. Mohanty, 2007, “Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert–Huang Transform”, Mechanical Systems and Signal Processing, vol. 21, pp.2607-2615.
[17] M. Costa, A. L. Goldberger and C. K. Peng, 2002, “Multiscale Entropy Analysis of Complex Physiologic Time Series”, Physical Review Letters, vol.89, No. 6, pp.0681021-0681021.
[18] J. L. Chang, J. A. Chao, Y. C. Huang and J. S. Chen, 2010, “Prognostic Experiment for Ball Screw Preload Loss of Machine Tool through the Hilbert-Huang Transform and Multiscale Entropy Method” Proceedings of the 2010 IEEE International, pp.376-380.
[19] B. S. Raghavendra, Student Member, IEEE, and D. N. Dutt, 2008, “Signal Characterization Using Fractal Dimension”, TENCON 2008 - 2008 IEEE Region 10 Conference, pp.1-4.
[20] Y. Tokunaga, T. Igarashi and and T. Sugiura, 1989, “Studies on the Sound and Vibration of Ball Screw” Transactions of the Japan Society of Mechanical Engineers, Part C, vol.55, No.520, pp.2945-2950.
[21] 蘇栢賢,2005,“滾珠導螺桿振動噪音之研究” ,國立清華大學碩士論文
[22] 王建文,2006, “滾珠螺桿低頻噪音源之鑑別即改善研究”, 國立清華大學碩士論文
[23] J. P. Hung, S. S. Wu, and Y. Chiu, 2004, “Impact Failure Analysis of Re-circulating Mechanism in Ball Screw” Engineering Failure Analysis, vol.11, pp.561-573.
[24] S. Frey and M. Walther, 2010, “Periodic Variation of Preloading in Ball Screws” Production Engineering Research and Development, vol. 4, pp.261-267.
[25] M. Pharr and G. Humphreys, 2004, “Physically Based Rendering: From Theory to Implementation”, Morgan Kaufmann, USA
[26] H. Nyquist, 1928, "Certain Topics in Telegraph Transmission Theory," Trans. AIEE, vol.47, pp.617-644.
[27] C. Y. Wonga, Y. N. Kwonb and S. Criddlec, 2009, “Use of Atomic Force Microscopy and Fractal Geometry to Characterize the Roughness of Nano-, Micro-, and Ultrafiltration Membranes”, Journal of Membrane Science, vol.340, pp.117–132.
[28] B. Dubuc, J. F. Quiniou, C. R.Carmes, C. Tricot and S. W. Zucker, 1989, "Evaluating the Fractal Dimension of Profiles", Physical Review A, vol.39, pp.1500-1512.
[29] J. Nogues, J. L. Costa and K.V. Rao, 1992, "Fractal Dimension of Thin Film Surfaces of Gold Sputter Deposited on Mica: a Scanning Tunneling Microscopic Study ", Physica A, vol.182, pp.532-541.
[30] 孫毅興,2010,"利用碎形理論建立量測訊號即時監測技術與磨潤行為關聯性之研究",國立成功大學碩士論文
[31] M.V. Berry, and D. H. Berman, 1980, "On the Weierstrass - Mandelbort Fractal Function", Proceedings of Royal Society of London, A370, pp.459-484.
[32] W. Yan, and K. Komvopoulos, 1998, "Contact Analysis of Elastic Plasitc Fractal Surface," Journal of Applied Physics, vol.84, pp.3617-3624.
[33] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman ,1986, “Fractal measure and their singularities: The characterization of strange sets”, Physcial Review A, vol.33, pp.1141–1151 .
[34] S. Laurent, 2010, “Fractals and Multifractals in Ecology And Aquatic Science”, CRC Press/Taylor & Francis, USA
[35] A. Rneyi,1970 ,”Probability Theory”, North-Holland, Amsterdam
[36] P. Grassberger, 1983, “Generalized Dimensions of Strange Attractors”, Physicas Letters A, vol.97, pp.227-230.
[37] H. Hentschel and I. Procaccia, 1983,” The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors”, Physica D: Nonlinear Phenomena, vol.8, pp. 435-444.
[38] T. Vicsek, 1993, “Fractal Growth Phenomena”, Word Scientific, Singapore
[39] H. Takayasu, 1997, “Fractals in the Physical Sciences”, Manchester University Press, Manchester.
[40] 蘇致遠,2004,"音樂及DNA序列之多重碎形分析",國立台灣大學博士論文
[41] C.J.G. Evertsz and B.B. Mandelbrot, 1992, “ Multifractal Measures, Chaos and Fractals: New Frontier of Science”, Springer, USA
[42] A. Belussi, C. Faloutsos, 1995, “Estimating the Selectivity of Spatial Queries Using the Correlation Fractal Dimension”, in 21th International Journal on Very Large Data Bases, pp.1-26
[43] 魏進忠,2003,"單螺帽雙圈滾珠螺桿在預負荷及潤滑作用條件下運動機制與機械性能的理論分析及實驗印證",國立成功大學博士論文
[44] 洪政豪、林仁輝、李旺龍、張育斌、朱孝業、魏進忠,2011, "高速高精度滾珠螺桿之性能提升研究",國家科學委員會輔助產學合作計畫結案報告。
[45] 劉志宏,2011,"高速滾珠螺桿振動響應與扭矩分析",國立虎尾科技大學碩士論文
[46] 葉承翔,2011,"高速滾珠螺桿熱效應對定位性能研究",國立虎尾科技大學碩士論文
[47] 康庭嘉,2011,"滾珠螺桿之螺帽熱變位分析研究",國立高雄應用科技大學碩士論文
[48] J.K. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, 2002, "Multifractal detrended fluctuation analysis of nonstationary time series", Physica A, vol.316, pp.87-114.