簡易檢索 / 詳目顯示

研究生: 邱郁玹
Chiu, Yu-Hauan
論文名稱: 大豆幼苗期抗炭疽病基因型的篩選
Screening of soybean genotypes for resistance to Colletotrichum truncatum at seedling stage
指導教授: 張松彬
Chang, Song-Bin
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 28
中文關鍵詞: 炭疽病Mandarin 507C. truncatum抗性對照高雄9號敏感對照
外文關鍵詞: Mandarin 507, Anthracnose, C. truncatum, Kaohsiung No.9, resistant control (RC), susceptible control(SC)
相關次數: 點閱:136下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 炭疽病是一種會導致經濟作物重大的經濟損失的真菌疾病,其中最常見引起大豆炭疽病的病原體是C. truncatum。目前關於抗炭疽病的大豆品種研究信息很少。本研究的目的是希望從亞洲蔬菜中心和台灣本土開發的不同種質和優良育種系中篩選出對C. truncatum有抗性的品種。在三次的接種試驗中,高雄9號作為敏感對照組(SC),Mandarin 507為抗性對照組(RC)。在第二和第三次的接種試驗中有五個基因型(VI017590、VI063762、VI027011、VI026746 和 VI014587)對 C. truncatum 具有抗性,但這五個品種並沒有對炭疽病完全免疫。找出五個具有抗性的大豆品系後,希望開發與抗炭疽病相關的SSR標記,但是分析上發現這些品系的遺傳訊息不穩定,造成判斷上的困難,因此需要更多的前置研究,例如發展純合子或純係的大豆品種。於是利用組織培養高雄9號和Mandarin 507,希望可以先培養出純合子。在高雄9號和Mandarin 507中可透過未成熟大豆的胚軸誘導出癒傷組織並生成芽或根,但是發展到成熟的大豆植株還需要更多的培養基測試。

    Anthracnose is a fungal disease that can cause significant economic losses to cash crops. The most common pathogen causing soybean anthracnose is C. truncatum. There is little research information on soybean varieties resistant to anthracnose. The purpose of this study is to screen out varieties that are resistant to C. truncatum from different germplasm and excellent breeding lines developed by the WorldVeg and Taiwan. Kaohsiung No. 9 was used as the sensitive control (SC) in the three inoculation trials, and Mandarin 507 was used as the resistance control (RC). In the second and third inoculation trials, five genotypes (VI017590, VI063762, VI027011, VI026746, and VI014587) were resistant to C. truncatum. However, five varieties were not fully immune to anthracnose. After identifying five resistant soybean lines, I hope to develop SSR markers related to anthracnose resistance. However, the genetic information of these lines is found to be unstable in analysis, and more pre-research is needed, such as the development of the homozygote or pure soybean varieties. Therefore, we used the tissue culture of Kaohsiung No.9 and Mandarin 507, hoping to cultivate homozygotes first. In Kaohsiung 9 and Mandarin 507, callus can be induced through the embryo axis of immature soybeans and form shoots or roots; however, more medium testing is needed to develop mature soybean plants.

    摘要 I ABSTRACT II Chapter 1 INTRODUCTION 1 1.1 Introduction of Soybean 1 1.2 Disease Symptoms of Soybean Anthracnose 2 1.3 Common Pathogen in the Soybean Anthracnose 2 1.4 Soybean Genotypes for Resistance to Colletotrichum truncatum 3 1.5 Molecular markers in soybeans 4 1.6 Callus Induction and Organogenesis in Soybean 5 Chapter 2 MATERIALS and METHODS 6 2.1 Seedling Preparation 6 2.2 Foliar spray inoculation 6 2.3 Disease severity rating 6 2.4 DNA extraction and polymerase chain reactions (PCR) with SSR markers 7 2.5 Callus Initiation 7 2.6 Media Preparation 8 Chapter 3 RESULT 9 3.1 Resistance genotyping screening. 9 3.2 Trial 3 improve relative humidity and environment in trial 2. 9 3.3 SSR markers were tested whether they relate to anthracnose. 10 3.4 Culture the embryo axis from Kaohsiung No.9 and Mandarin 507 to induce callus. 11 Chapter 4 DISCUSSION 12 4.1 Mandarin 507 had an extreme DSR value in trial 1 than trial 2 and 3. 12 4.2 VI016699, VI016930, and VI014551 had the opposite result between trial 2 and trial 3. 12 4.3 Genetic variability was challenging to develop SSR markers associated with anthracnose. 13 Chapter 5 REFERENCE 14 Figure 1. Colletotrichum truncatum. 18 Figure 2. Disease severity rating (DSR, 0 to 5) 19 Figure 3. The disease severity rating (DSR) in trial 1. 20 Figure 4. The disease severity rating (DSR) in trial 2. 21 Figure 5. The P-value of the difference among replications and accessions. 22 Figure 6. The disease severity rating in trial 3. 23 Figure 7. Compare DSR between trial 2 and trial 3. 24 Figure 8. Genetic map of soybean SSR markers. 25 Figure 9. Capillary electrophoresis showing a polymorphic pattern of the SSR marker Satt184 detected in ten accessions. 26 Figure 10. Culture the embryo axis from Kaohsiung No.9 and Mandarin 507 to induce callus. 27 Figure 11. Interaction plot for DSR value by repeats. 28

    Akkaya MS, Bhagwat AA, Cregan PB. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics. 132(4):1131-1139.
    Akkaya MS, Shoemaker RC, Specht JE, Bhagwat AA, Cregan PB. 1995. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Science. 35(5):1439-1445.
    Bailey MA, Boerma HR, Parrott WA. 1993. Genotype effects on proliferative embryogenesis and plant-regeneration of soybean. In Vitro Cell Dev-Pl. 29p(3):102-108.
    Blanc G, Wolfe KH. 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 16(7):1667-1678.
    Boufleur TR, Ciampi-Guillardi M, Tikami I, Rogerio F, Thon MR, Sukno SA, Massola Junior NS, Baroncelli R. 2021. Soybean anthracnose caused by colletotrichum species: Current status and future prospects. Mol Plant Pathol. 22(4):393-409.
    Cannon PF, Damm U, Johnston PR, Weir BS. 2012. Colletotrichum - current status and future directions. Stud Mycol. 73(1):181-213.
    Choi IY, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS et al. 2007. A soybean transcript map: Gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics. 176(1):685-696.
    Damm U, Sato T, Alizadeh A, Groenewald JZ, Crous PW. 2019. The colletotrichum dracaenophilum, c. Magnum and c. Orchidearum species complexes. Stud Mycol. 92:1-46.
    Dolezel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2(9):2233-2244.
    GARNER BWW. 1930. Photoperiodic response of soybeans in relation to temperature and other environmental factor. Journal of Agricultural Research.
    Ghimire T, Neupane S, Gharti DB, Subedi S. 2016. Management of anthracnose in soybean using fungicide. Journal of Nepal Agricultural Research Council. 1:29-32.
    Hartman GL, West ED, Herman TK. 2011. Crops that feed the world 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Security. 3(1):5-17.
    Ikeuchi M, Sugimoto K, Iwase A. 2013. Plant callus: Mechanisms of induction and repression. Plant Cell. 25(9):3159-3173.
    Keim P, Diers BW, Olson TC, Shoemaker RC. 1990. Rflp mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics. 126(3):735-742.
    Maughan PJ, Saghi Maroof MA, Buss GR. 1995. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome. 38(4):715-723.
    McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE et al. 2009. Genomewide snp variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A. 106(30):12273-12278.
    Morgante M, Olivieri AM. 1993. Pcr-amplified microsatellites as markers in plant genetics. Plant Journal. 3(1):175-182.
    Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 15(3):473-497.
    Palmer RGaK, T. C. 1987. Soybeans: Improvement, production, and uses. Qualitative genetics and cytogenetics.
    Riccioni L, Conca G, Hartman GL. 1998. First report of colletotrichum coccodes on soybean in the united states. Plant Dis. 82(8):959.
    Shoemaker R, Keim P, Vodkin L, Retzel E, Clifton SW, Waterston R, Smoller D, Coryell V, Khanna A, Erpelding J et al. 2002. A compilation of soybean ests: Generation and analysis. Genome. 45(2):329-338.
    Shoemaker RC, Polzin,K., Labate,J., Specht,J., Brummer,E.C., Olson,T., Young,N.D., Concibido,V., Wilcox,J., Tamulonis,J.P. et al. 1996. Genome duplication in soybean (glycine subgenus soja). Genetics, . 144:329–338.
    Simmonds DH, Donaldson PA. 2000. Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Rep. 19(5):485-490.
    Singh RJ, Hymowitz T. 1988. The genomic relationship between glycine max (l.) merr. And g. Soja sieb. And zucc. As revealed by pachytene chromosome analysis. Theor Appl Genet. 76(5):705-711.
    Song QJ, Jia GF, Zhu YL, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB. 2010. Abundance of ssr motifs and development of candidate polymorphic ssr markers (barcsoyssr_1.0) in soybean. Crop Science. 50(5):1950-1960.
    Steward FC, Mapes MO, Mears K. 1958. Growth and organized development of cultured cells. Ii. Organization in cultures grown from freely suspended cells. American Journal of Botany. 45(10).
    Tian AG, Wang J, Cui P, Han YJ, Xu H, Cong LJ, Huang XG, Wang XL, Jiao YZ, Wang BJ et al. 2004. Characterization of soybean genomic features by analysis of its expressed sequence tags. Theor Appl Genet. 108(5):903-913.
    Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18(22):6531-6535.
    Wisconsin-Madison Uo. 2015. Soybean growth and development.
    Xia Z, Tsubokura Y, Hoshi M, Hanawa M, Yano C, Okamura K, Ahmed TA, Anai T, Watanabe S, Hayashi M et al. 2007. An integrated high-density linkage map of soybean with rflp, ssr, sts, and aflp markers using a single f2 population. DNA Res. 14(6):257-269.
    Yang HC, Hartman GL. 2015. Methods and evaluation of soybean genotypes for resistance to colletotrichum truncatum. Plant Dis. 99(1):143-148.
    Yang HC, Haudenshield JS, Hartman GL. 2014. Colletotrichum incanum sp. Nov., a curved-conidial species causing soybean anthracnose in USA. Mycologia. 106(1):32-42.
    林俊義. 2005. 台灣主要作物抗病抗蟲品種介紹.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE