| 研究生: |
許柏彥 Hsu, Po-Yen |
|---|---|
| 論文名稱: |
鈦鎳銅合金薄膜成長及特性之研究 Growth and Characterization of TiNiCu Alloy Thin Films |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 結晶活化能 、表面化學 、鈦鎳銅合金薄膜 、形狀記憶合金 |
| 外文關鍵詞: | sputter, TiNiCu alloy thin film, shape memory alloy, crystallization activation energy, surface chemistry |
| 相關次數: | 點閱:122 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中使用直流濺鍍法,以不同成份之靶材合成不同成份之鈦鎳銅薄膜,並藉由各種不同之分析探討薄膜成份、工作壓力與濺鍍速率之間的關係。我們發現工作壓力升高會導致鈦成份的升高,及銅、鎳成份的降低。而沈積速率會隨著薄膜中銅的成分增加而增加,但隨著鈦與鎳成份的增加而減少;沈積速率亦會隨著工作壓力的升高而降低。在室溫下濺鍍之鈦鎳銅合金薄膜為非晶態,必須經高溫真空熱處理使其結晶化,我們以DSC、XRD、TEM觀察薄膜由非晶態到結晶相的變化,並求其結晶活化能,我們發現鈦鎳銅薄膜之結晶活化能一開始隨著銅成份的增加而增加,在薄膜成份Ti45.7Ni41.1Cu13.2時出現最高值702.3 kJ/mol,之後便隨著銅成份增加而下降。有鑑於鈦鎳基形狀記憶合金已被廣泛應用在醫學方面,其薄膜所構成之微致動器必然也會在未來派上用場,因此我們以ESCA分析鈦鎳銅合金薄膜表面暴露於空氣中,各元素的表面化學狀態與氧化情形,發現薄膜之表面化學狀態以TiO2為主,且TiO2會壓抑薄膜表面銅與鎳的存在。在本研究中,我們會對於鈦鎳銅形狀記憶合金薄膜在薄膜製備、結晶行為及表面化學狀態方面的特性,作一番深入的探討。
Deposition of TiNiCu-based thin films was performed using a dc sputter deposition technique. The target composition was varied such that a series of TiNiCu thin films with various compositions was obtained. The relationship among film composition, deposition rate and working pressure were investigated. The activation energy for crystallization was determined. The activation energy ranges form 340.4 kJ/mol to 702.3 kJ/mol, depending on the film composition. It increases and then decreases with Cu concentration and the peak value occurs at a composition of Ti45.7Ni41.1Cu13.2. Surface chemistry of TiNiCu-base thin films was analyzed to examine effects of the film composition and the exposure time to the ambient condition. The result indicates a preferential formation of TiO2, which suppresses the surface concentrations of both Ni and Cu. The TiNiCu thin films were characterized using X-ray diffraction and transmission electron microscope (TEM) for the microstructure before and after annealing.
1.L.C.Change and T.A.Read,Trans.AIME.191(1951)47.
2.W.J.Buehler,J.V.Gilfrich,and R.C.Wiley,J.Appl.Phys.,34(1963)1475.
3.C.M.Wayman,”Some applications of shape memory alloys.” J.Metals,32(1980)129.
4.H.C.Tong and C.M.Wayman,Acta Met.,22(1974)887.
5.C.M.Wayman,Trans.,JIM.(Supplement),17(1976)159.
6.D.P.Dunne and C.M.Wayman,Met.Trans.,4(1973)147.
7.O.Mercier and K.N.Melton,Met.Trans.,10A(1979)387.
8.R.H.Bricknell, K.N.Melton and O.Mercier, Met.Trans., 10A(1979)693.
9.R.H.Bricknell,and K.N.Melton, Met.Trans.,11A(1980)1541.
10.T.Tadaki and C.M.Wayman,Metallography,15(1982)233.
11.T.Tadaki and C.M.Wayman,Metallography,15(1982)247.
12.T.H.Nam,T.Saburi and K.Shimizu,Mat.Trans.JIM,31(1990)959.
13.T.H.Nam,T.Saburi and K.Shimizu,Mat.Trans.JIM,33(1991)814.
14.J.A.Walker,K.J.Gabriel and M.Mehregany,”Thin-film processing of TiNi Shape Memory Alloy.” Sensor and Actuator,A21-23(1990)243.
15.J.D.Busch, A.D.Johnson, C.H.Lee and D.A. Stevenson,”Shape-memory properties in Ni-Ti sputter- deposited film.”J.Appl.Phys.,68(1990)6224.
16.A.D.Johnson,”Vacuum-deposited TiNi shape memory film:characterization and application in microdevices.”J.Micromech.Microeng.,1(1991)34.
17.Peter Krulevitch,Abraham P.Lee,Philip B.Ramsey,James C.Trenvino,Julie Hamilton,and M.Allen Northrup.”Thin Film Shape Memory Alloy Microactuator”J.Microelectromechanical System Vol.5,No.4(1996)270
18.William L.Bernard,Horad Kahn,Arthur H.Heuer,and Michael A.Huff”Thin Film Shape Memory Alloy Actuated Micropump”J.Microelectromechanical System Vol.7,No.2,June 1998.
19.H.D.Gu,K.M.Leung,C.Y.Chung,L.You,X.D.Han,K.S.Chan,J.K.L.Lai,”Pulsed laser deposited of NiTi sahpe memory alloy thin films with optimum parameters.”Thin solid films 330 (1998) 196.
20.C.Seeger,P.L.Ryder,”Kinectics of the crystallization of amorphous Ti-Ni and Ti-Ni-Si alloys.”Mat.Sci. and Eng., A179/A180(1994)641.
21.A.Pratap,K.G.Raval,A.M.Awasthi, ”Kinetics of crystallization of a ternary titanium based amorphous alloy.”Mat.Sci. and Eng., A304-306 (2001)357-361.
22.J.K.Kim,P.Moine and D.A.Stevenson.”Crystallization behavior of amorphous Ni-Ti alloys prepared by sputter deposition.”Scipta Metall.,20(1986)243.
23.Warren J.Moberly,J.D.Busch,A.D.Johnson and M.H. Berkson,”IN SITU HVEM OF CRYSTALLIZATION OF AMORPHOUS TiNi THIN FILMS.”Mat.Res.Soc.Symp.Proc.Vol.230,(1992)85.
24.E.F.Gong,H.M.Shen amd Y.N.Wang,”Crystallization of amorphous sputtered NiTi shape-memory alloy films.”Mat.Res.Soc.Symp.Proc.Vol.389(1996)405.
25.J.Z.Chen,S.K.Wu,”Crystallization behavior of r.f. -sputtered TiNi thin films.”Thin Solid Films 339(1999)194.
26.J.Z.Chen,S.K.Wu,”Crystallization temperature and activation energy of rf-sputtered near-equiatomic TiNi and Ti50Ni40Cu10 thin films.”J.Non-Crystalline Solids 288 (2001)159-165.
27.M.Avrami,”Kinetics of phase change I.”J.Chem. Phys.,7(1940) 1103.
28.M.Avrami,”Kinetics of phase change II.”J.Chem.Phys.,8(1940) 212.
29.M.Avrami,”Kinetics of phase change III.” J.Chem. Phys., 9(1941) 117.
30.A.K.Jena,M.C.Chaturvedi,:Phase transformation in materials.”1992,Prentice.p243.
31.H.E.Kissinger,”Reaction Kinetics in Differential Thermal Analysis.”Anal.Chem.,29(1957)1702.
32.C.M.Wayman,Progress in materials science.”36(1992)203.
33.T.W.Duerig,K.N.Melton,D.Stockel,C.M.Wayman,Engineering Aspects of Shape Memory Alloys,Butterworth-Heinemann Ltd., 1990
34.Z.G.Wei, R.Sandstorm and S.Miyazaki, J.Mater. Sci.,33(1998) 3743.
35.S.Miyazaki,Surf.Sci.,15(1994)467.
36.S.M.Green,D.M.Grant,J.V.Wood,Mater.Sci.Engng.,A224(1997)21.
37.Ohring,M.(1992).”The Materials Science of Thin Films.”Academic.
38. 賴耿陽編譯,IC製程之濺射技術,復漢出版社。
39.Anderson,H.H., and H.L.Bay.1981.”Sputtering Yeild Measurements.”Chap.4 in Sputtering by Particle Bombardment I,ed.R.Behrisch.Berlin:Springer-Verlag.
40.Mitsuhara Konuma,”Film deposition by plasma techniques.”P129.
41.Handbook of sputter deposition technology, principles, technology and applications.Kiyotaka Wasa,Shigeru Hayakawap.
42.W.D.Westwood,”Calculation of deposition rate in diode sputtering system.”J.Vac.Sci.Technol.15(1978)1.
43.R.V.Stuart,G.K.Wehner and G.S.Anderson,”Energy distribution of atoms Sputtered from polycrystalline metals.”J.appl.Phys.,40(1969)p803.
44.G.M.Tuner,I.S.Falconer,B.W.James and D.R.Mckenzie.”Monte Carlo calculation of the properties of sputtered atoms at a substrate surface in a magnetron discharge.”J. Vac. Sci. Technol.A10(3)(1992)p455.
45.S.Berg and I.V. Katardjiev, J. Vac. Sci. Technol. A (1999) 17,1916.
46.G.K.Wehner,Rep.General Mills,Minneapolis(1962)2309.
47.S.D.Kaloshkin,I.A.”The crystallization kinetics of amorphous alloys. ”Tomilin Thermochimica Acta 280/281 (1996)303.
48.H.S Chen, B.K. Park, Acta Metall.21 (1973) 395.
49.H.S Chen, Acta Metall.22 (1974) 897.
50.A.W.Webber,H.Bakker,Physica B 153(1988)93.
51.A.R.Miedema.Philips Tech.Rev.36(1976)217.
52.B.S.Murty,S.Ranganathan and M.Mohan Rao”Solid state amorphous in binary Ti-Ni,Ti-Cu and ternary Ti-Ni-Cu system by mechanical alloying.”Mater.Sci.Eng.A149(1992)231-240.
53.P.Y.Lee,J.L.Tang and H.M.Lin,”Amorphization behaviors in mechanically alloyed Ni-Ta powders.”J. Mater. Sci. 33 (1998) 235.
54.K.H.Buschow.Philips J.Res.39(1984)255.
55.Z.Altounian,G.H.Tu and J.O. Strom-olsen,J.Appl.Phys.53 (1983)3111.
56. Y.C.Lo,S.K.Wu,H.E.Hong,Acta Metall. Mater.41(1993)747.