| 研究生: |
江幸穎 Chiang, Hsin-Yin |
|---|---|
| 論文名稱: |
利用微流體系統製備粒子並應用於包覆抗壞血酸減緩其還原力的衰退 Encapsulating ascorbic acid in biopolymer microparticles for delayed degradation. |
| 指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 抗壞血酸 、微流體系統 、微粒子 、循環伏安法 |
| 外文關鍵詞: | ascorbic acid, microfluidic system, microparticles, cyclic voltammetry |
| 相關次數: | 點閱:145 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
抗壞血酸常被添加於保養品中,它不僅可以幫助膠原蛋白生成、去除自由基,還可以抑制黑色素生成,隨著健康意識增長,抗壞血酸更是被大量用於食品業、製藥業和化妝品業。然而,抗壞血酸也因為它的高反應性導致容易氧化,失去原本之效用,因此本研究的目的欲藉由載體包覆抗壞血酸,避免使之接觸到氧氣及水以防止其氧化。
為了減少使用樣品量以及耗能,本研究使用微流道系統來製備褐藻膠混抗壞血酸的液滴,再浸入氯化鈣水溶液中使液滴交聯,最後將粒子冷凍乾燥,希望可以隔絕外界達到減緩抗壞血酸氧化的效果,為了最適化包覆率,我們改變了液滴的大小以及抗壞血酸初始添加量,由結果得知包覆率大致介於30至40 μmol,液滴大小對包覆率無明顯影響,為了能穩定生成液滴,最後決定製備300 μm的液滴,添加100 μmol的抗壞血酸,並將粒子儲存於一般室溫下和37 oC飽和濕度下一個月,再比較不同濃度褐藻膠粒子的保存能力,在一般室溫狀態下,1 wt%褐藻膠粒子具有最好的保存效果,比未包覆的抗壞血酸粉末多了14 %的剩餘量,但是,褐藻膠粒子在高濕度環境下,保存效果比抗壞血酸粉末來的差,為了改善此情況,於是添加了蝦紅素(astaxanthin)於粒子中,由結果發現,在一般室溫狀態下,添加1 mM蝦紅素有最好的保存效果,但在37 oC 100 %RH下,添加2mM蝦紅素有較好的保存效果。總結本研究結果,成份為1 wt%褐藻膠,100 μmol抗壞血酸和1mM蝦紅素粒子具有最好的保存效果,在室溫狀態下保存一個月比粉末形態保存的樣品多了43 %以未完全氧化形態存在的抗壞血酸。
Ascorbic acid is a beneficial material; for example, it helps the collagen forming, scavenges free radicals, inhibits the formation of melanin, and evens out skin complexion However, ascorbic acid is easily degraded due to its high reactivity. Therefore, the aim of this study is to develop encapsulating methods of ascorbic acid for delayed oxidation.
In order to prevent ascorbic acid from oxidation, references mentioned that microparticles and emulsion are some methods to storage. Emulsion is good for adsorption but possible demulsification. Microparticles are convenient to transport and have good storage ability but the process more complicated. In this study, microfluidic platform is chosen for fabrication because it only needs tiny amounts of sample and the cost during developing phase can be reduced dramatically. Micro-droplets containing mixture of alginate and ascorbic acid were produced and then the subsequently cured by immersion in calcium chloride solution to form alginate particles. After freeze drying, dehydrated alginate microparticles containing ascorbic acid and coated by oil are obtained. The alginate matrix and oil coating are expected to retard the contact of water and oxygen to ascorbic acid.
To find the condition of high encapsulation ratio and protection ability, different sizes of droplets with different alginate concentrations were fabricated. Moreover, microparticles are stored under room temperature (R.T.) and humidity (R.H.) or 37 oC and 100 % relative humidity (100 % RH) to test their abilities in reduced oxidation of ascorbic acid. From the results, we find that 1 wt% alginate particles prevent ascorbic acid from oxidation and the remained percentage of non-oxidized ascorbic acid is 20 % higher than unprotected powder in R.T.R.H. However, the 1 wt% alginate particles do not prevent well in 37 oC, 100 % RH environment. Therefore, astaxanthin is added in mixture of alginate and ascorbyl acid to help protection. In result, encapsulating ascorbic acid in 1 wt% alginate and 1 mM astaxanthin microparticles considerably delayed the oxidation and remained 43 % more than ascorbyl acid powder in R.T.R.H after one month. In addition, encapsulating ascorbic acid in 1 wt% alginate and 2 mM astaxanthin microparticles delayed the oxidation and remained 20 % more than ascorbyl acid powder in 37 oC, 100 % RH environment.
1. Chu, L.Y., et al., Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics. Advanced Functional Materials, 2007. 17(17): p. 3499-3504.
2. Shah, R.K., J.W. Kim, and D.A. Weitz, Janus supraparticles by induced phase separation of nanoparticles in droplets. Advanced Materials, 2009. 21(19): p. 1949-1953.
3. Shah, R.K., et al., Designer emulsions using microfluidics. Materials Today, 2008. 11(4): p. 18-27.
4. Cho, S.K., H.J. Moon, and C.J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003. 12(1): p. 70-80.
5. Teh, S.Y., et al., Droplet microfluidics. Lab on a Chip, 2008. 8(2): p. 198-220.
6. Thorsen, T., et al., Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001. 86(18): p. 4163-4166.
7. Zagnoni, M., J. Anderson, and J.M. Cooper, Hysteresis in multiphase microfluidics at a t-junction. Langmuir, 2010. 26(12): p. 9416-9422.
8. Ganan-Calvo, A.M. and J.M. Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing. Physical Review Letters, 2001. 87(27).
9. Wehking, J.D., et al., Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction. Microfluidics and Nanofluidics, 2014. 16(3): p. 441-453.
10. Nunes, J.K., et al., Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. J Phys D Appl Phys, 2013. 46(11).
11. Schultz, S., et al., High-pressure homogenization as a process for emulsion formation. Chemical Engineering & Technology, 2004. 27(4): p. 361-368.
12. Vladisavljevic, G.T., I. Kobayashi, and M. Nakajima, Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluidics and Nanofluidics, 2012. 13(1): p. 151-178.
13. Adams, L.L.A., et al., Single step emulsification for the generation of multi-component double emulsions. Soft Matter, 2012. 8(41): p. 10719-10724.
14. Kim, S.H., et al., Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device. Microfluidics and Nanofluidics, 2013. 14(3-4): p. 509-514.
15. Shum, H.C., et al., Double emulsion templated monodisperse phospholipid vesicles. Langmuir, 2008. 24(15): p. 7651-7653.
16. Huang, S.H., et al., A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems. Journal of Micromechanics and Microengineering, 2006. 16(11): p. 2336-2344.
17. Saeki, D., et al., Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Lab on a Chip, 2010. 10(3): p. 357-362.
18. Chang, F.C. and Y.C. Su, Controlled double emulsification utilizing 3D PDMS microchannels. Journal of Micromechanics and Microengineering, 2008. 18(6).
19. Abbas, S., et al., Ascorbic acid: Microencapsulation techniques and trends-a review. Food Reviews International, 2012. 28(4): p. 343-374.
20. Okushima, S., et al., Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004. 20(23): p. 9905-9908.
21. Utada, A.S., et al., Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett, 2007. 99(9): p. 094502.
22. Utada, A.S., et al., Dripping, jetting, drops, and wetting: The magic of microfluidics. Mrs Bulletin, 2007. 32(9): p. 702-708.
23. Utada, A.S., et al., Monodisperse double emulsions generated from a microcapillary device. Science, 2005. 308(5721): p. 537-541.
24. Savian, A.L., et al., Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug. Materials Science & Engineering C-Materials for Biological Applications, 2015. 46: p. 69-76.
25. Marionnet, C., et al., Morphogenesis of dermal-epidermal junction in a model of reconstructed skin: beneficial effects of vitamin C. Experimental Dermatology, 2006. 15(8): p. 625-633.
26. Iida, K., et al., Potene inhibitors of tyrosinase activity and melanin biosynthesis from rheum-officinale. Planta Medica, 1995. 61(5): p. 425-428.
27. Desai, K.G., C. Liu, and H.J. Park, Characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres as affected by chitosan molecular weight. Journal of Microencapsulation, 2006. 23(1): p. 79-90.
28. Desai, K.G.H., C. Liu, and H.J. Park, Characteristics of vitamin C immobilized particles and sodium alginate beads containing immobilized particles. Journal of Microencapsulation, 2005. 22(4): p. 363-376.
29. Shuibing Yang, W.L., Chengmei Liu, Weilin Liu, Guihong Tong, Huijuan Zheng, Wei Zhou, Characterization and bioavailability of vitamin c nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization. Journal of Dispersion Science and Technology, 2012. 33(11): p. 1608-1614.
30. Spiclin, P., M. Gasperlin, and V. Kmetec, Stability of ascorbic palmitate in topical microemulsions. International Journal of Pharmaceutics, 2001. 222(2): p. 271-279.
31. Gianeti, M.D., et al., Benefits of combinations of vitamin A, C and E derivatives in the stability of cosmetic formulations. Molecules, 2012. 17(2): p. 2219-2230.
32. Cheng, S.Y., et al., Cosmetic textiles with biological benefits: Gelatin microcapsules containing vitamin c. International Journal of Molecular Medicine, 2009. 24(4): p. 411-419.
33. Fathi-Azarbayjani, A., et al., Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. Aaps Pharmscitech, 2010. 11(3): p. 1164-1170.
34. Yeh, C.-H., K.-R. Chen, and Y.-C. Lin, Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluidics and Nanofluidics, 2013. 15(6): p. 775-784.
35. Liang, H.C., et al., Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A, 2003. 65A(2): p. 271-282.
36. Sharma, O.P. and T.K. Bhat, DPPH antioxidant assay revisited. Food Chemistry, 2009. 113(4): p. 1202-1205.
37. Wei, Y., et al., Simple LC method with chemiluminescence detection for simultaneous determination of arbutin and L-ascorbic acid in whitening cosmetics. Chromatographia, 2007. 65(7-8): p. 443-446.
38. Pisoschi, A.M., et al., Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at pt and carbon paste electrodes. Molecules, 2011. 16(2): p. 1349-1365.
39. Esch, J.R., J.R. Friend, and J.K. Kariuki, Determination of the vitamin c content of conventionally and organically grown fruits by cyclic voltammetry. International Journal of Electrochemical Science, 2010. 5(10): p. 1464-1474.
40. Ogunlesi, M., et al., Vitamin c contents of tropical vegetables and foods determined by voltammetric and titrimetric methods and their relevance to the medicinal uses of the plants. International Journal of Electrochemical Science, 2010. 5(1): p. 105-115.
41. Focsan, A.L., S. Pan, and L.D. Kispert, Electrochemical Study of Astaxanthin and Astaxanthin n-Octanoic Monoester and Diester: Tendency to Form Radicals. Journal of Physical Chemistry B, 2014. 118(9): p. 2331-2339.