簡易檢索 / 詳目顯示

研究生: 江幸穎
Chiang, Hsin-Yin
論文名稱: 利用微流體系統製備粒子並應用於包覆抗壞血酸減緩其還原力的衰退
Encapsulating ascorbic acid in biopolymer microparticles for delayed degradation.
指導教授: 王翔郁
Wang, Hsiang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 123
中文關鍵詞: 抗壞血酸微流體系統微粒子循環伏安法
外文關鍵詞: ascorbic acid, microfluidic system, microparticles, cyclic voltammetry
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗壞血酸常被添加於保養品中,它不僅可以幫助膠原蛋白生成、去除自由基,還可以抑制黑色素生成,隨著健康意識增長,抗壞血酸更是被大量用於食品業、製藥業和化妝品業。然而,抗壞血酸也因為它的高反應性導致容易氧化,失去原本之效用,因此本研究的目的欲藉由載體包覆抗壞血酸,避免使之接觸到氧氣及水以防止其氧化。
    為了減少使用樣品量以及耗能,本研究使用微流道系統來製備褐藻膠混抗壞血酸的液滴,再浸入氯化鈣水溶液中使液滴交聯,最後將粒子冷凍乾燥,希望可以隔絕外界達到減緩抗壞血酸氧化的效果,為了最適化包覆率,我們改變了液滴的大小以及抗壞血酸初始添加量,由結果得知包覆率大致介於30至40 μmol,液滴大小對包覆率無明顯影響,為了能穩定生成液滴,最後決定製備300 μm的液滴,添加100 μmol的抗壞血酸,並將粒子儲存於一般室溫下和37 oC飽和濕度下一個月,再比較不同濃度褐藻膠粒子的保存能力,在一般室溫狀態下,1 wt%褐藻膠粒子具有最好的保存效果,比未包覆的抗壞血酸粉末多了14 %的剩餘量,但是,褐藻膠粒子在高濕度環境下,保存效果比抗壞血酸粉末來的差,為了改善此情況,於是添加了蝦紅素(astaxanthin)於粒子中,由結果發現,在一般室溫狀態下,添加1 mM蝦紅素有最好的保存效果,但在37 oC 100 %RH下,添加2mM蝦紅素有較好的保存效果。總結本研究結果,成份為1 wt%褐藻膠,100 μmol抗壞血酸和1mM蝦紅素粒子具有最好的保存效果,在室溫狀態下保存一個月比粉末形態保存的樣品多了43 %以未完全氧化形態存在的抗壞血酸。

    Ascorbic acid is a beneficial material; for example, it helps the collagen forming, scavenges free radicals, inhibits the formation of melanin, and evens out skin complexion However, ascorbic acid is easily degraded due to its high reactivity. Therefore, the aim of this study is to develop encapsulating methods of ascorbic acid for delayed oxidation.

    In order to prevent ascorbic acid from oxidation, references mentioned that microparticles and emulsion are some methods to storage. Emulsion is good for adsorption but possible demulsification. Microparticles are convenient to transport and have good storage ability but the process more complicated. In this study, microfluidic platform is chosen for fabrication because it only needs tiny amounts of sample and the cost during developing phase can be reduced dramatically. Micro-droplets containing mixture of alginate and ascorbic acid were produced and then the subsequently cured by immersion in calcium chloride solution to form alginate particles. After freeze drying, dehydrated alginate microparticles containing ascorbic acid and coated by oil are obtained. The alginate matrix and oil coating are expected to retard the contact of water and oxygen to ascorbic acid.

    To find the condition of high encapsulation ratio and protection ability, different sizes of droplets with different alginate concentrations were fabricated. Moreover, microparticles are stored under room temperature (R.T.) and humidity (R.H.) or 37 oC and 100 % relative humidity (100 % RH) to test their abilities in reduced oxidation of ascorbic acid. From the results, we find that 1 wt% alginate particles prevent ascorbic acid from oxidation and the remained percentage of non-oxidized ascorbic acid is 20 % higher than unprotected powder in R.T.R.H. However, the 1 wt% alginate particles do not prevent well in 37 oC, 100 % RH environment. Therefore, astaxanthin is added in mixture of alginate and ascorbyl acid to help protection. In result, encapsulating ascorbic acid in 1 wt% alginate and 1 mM astaxanthin microparticles considerably delayed the oxidation and remained 43 % more than ascorbyl acid powder in R.T.R.H after one month. In addition, encapsulating ascorbic acid in 1 wt% alginate and 2 mM astaxanthin microparticles delayed the oxidation and remained 20 % more than ascorbyl acid powder in 37 oC, 100 % RH environment.

    摘要 I EXTENTED ABSTRACT II 誌謝 X 目錄 XI 圖目錄 XV 表目錄 XX 符號 XXI 第一章 緒論 1 1-1前言 1 1-2研究動機及目的 2 1-3論文架構 3 第二章 文獻回顧 4 2-1製備微液滴 4 2-1-1微液滴系統 4 2-1-2製備微液滴之各種技術 7 2-1-3微流道中影響液滴生成之參數 8 2-2抗壞血酸 12 2-2-1抗壞血酸之特性 12 2-2-2抗壞血酸保存方法 15 2-2-3抗壞血酸微粒子製備方法 16 2-3抗壞血酸偵測方法 18 2-3-1 DPPH檢測抗壞血酸 19 2-3-2循環伏安法 19 第三章 實驗方法與材料 22 3-1製備毛細管裝置 22 3-1-1實驗材料 22 3-1-2裝置製作 23 3-1-3實驗操作 24 3-2黃光顯影及高分子翻模 25 3-2-1實驗材料 25 3-2-2實驗儀器 28 3-2-3微流道光罩圖形設計 30 3-2-4黃光顯影製程 31 3-2-5高分子翻模製程 35 3-3製備液滴及粒子 37 3-3-1實驗材料 37 3-3-2實驗儀器 40 3-3-3產生液滴操作 45 3-3-3-1裝置與儀器組裝 45 3-3-3-2微液滴與微粒子實驗觀察 45 3-3-3-3膠原蛋白粒子測試操作 45 3-3-3-4明膠溶液測試 46 3-3-3-5褐藻膠溶液測試 46 3-3-3-6產生雙層液滴 46 3-3-4製備粒子 47 3-3-4-1明膠粒子製備 47 3-3-4-2褐藻膠微粒子製備 48 3-3-4-3冷凍乾燥及粒子的保存 48 3-3-4-4褐藻膠/抗壞血酸粒子製備 49 3-3-4-5配製蝦紅素溶液 50 3-4檢測抗壞血酸含量 51 3-4-1實驗材料 51 3-4-2實驗儀器 52 3-4-3偵測方法 53 3-4-3-1循環伏安法 53 3-4-3-1-1參考電極之製作 53 3-4-3-1-2參數測定及操作 54 3-4-3-1-3檢量線之建立 55 3-4-3-2 DPPH自由基檢測法 55 3-5數據分析 56 3-5-1循環伏安法 56 3-5-2 DPPH自由基檢測法 57 第四章 結果與討論 58 4-1液滴的產生 58 4-1-1毛細管裝置 58 4-1-1-1單層液滴 58 4-1-1-2雙層(單顆)液滴 60 4-1-1-3雙層(多顆)液滴 61 4-1-2微流道裝置 62 4-1-2-1微流道裝置1液滴產生測試 65 4-1-2-2微流道裝置2液滴產生測試 65 4-1-2-3微流道裝置3晶圓設計結果 66 4-1-2-4微流道裝置3雙層液滴產生測試 67 4-1-2-5微流道裝置3液滴大小測試 70 4-2包覆之高分子選擇 72 4-2-1膠原蛋白高分子 72 4-2-1-1流道外交聯測試 72 4-2-1-2流道內交聯測試 73 4-2-2明膠高分子 73 4-2-2-1流道外交聯測試 73 4-2-2-2流道內交聯測試:微流道裝置1(注射泵浦推動流體) 75 4-2-2-3流道內交聯測試:微流道裝置3(注射泵浦吸取流體) 78 4-2-3褐藻膠高分子 80 4-2-4粒子收集純化 80 4-3抗壞血酸含量測定參數測試 81 4-3-1抗壞血酸粒子溶解測試 81 4-3-1-1 DPPH標準曲線 82 4-3-1-2維生素溶液隨時間的氧化 83 4-3-1-3褐藻膠溶解測試 84 4-3-1-4粒子溶液測試 85 4-3-2環伏安法參數選定 87 4-3-3 DPPH和循環伏安法比較 91 4-3-4抗壞血酸粒子檢量線 92 4-3-5蝦紅素水溶液循環伏安法曲線 94 4-3-6抗壞血酸蝦紅素粒子檢量線 94 4-4褐藻膠混抗壞血酸粒子 96 4-4-1粒子大小對抗壞血酸包覆率的影響 96 4-4-2不同抗壞血酸初始量 98 4-4-3抗壞血酸粒子的保存測試 99 4-4-4不同儲存環境對抗壞血酸粒子的影響 100 4-4-5加入蝦紅素對抗壞血酸粒子的影響 102 第五章 結論與未來展望 104 5-1結論 104 5-2未來展望 105 參考文獻 106 附錄一流道深度測量 111 附錄二數據統計分析 114 附錄二-1褐藻膠濃度以及液滴大小對包覆量分析結果 115 附錄二-2褐藻膠濃度對包覆量分析結果 117 附錄二-3粒子於不同儲存環境的結果分析 120

    1. Chu, L.Y., et al., Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics. Advanced Functional Materials, 2007. 17(17): p. 3499-3504.
    2. Shah, R.K., J.W. Kim, and D.A. Weitz, Janus supraparticles by induced phase separation of nanoparticles in droplets. Advanced Materials, 2009. 21(19): p. 1949-1953.
    3. Shah, R.K., et al., Designer emulsions using microfluidics. Materials Today, 2008. 11(4): p. 18-27.
    4. Cho, S.K., H.J. Moon, and C.J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003. 12(1): p. 70-80.
    5. Teh, S.Y., et al., Droplet microfluidics. Lab on a Chip, 2008. 8(2): p. 198-220.
    6. Thorsen, T., et al., Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001. 86(18): p. 4163-4166.
    7. Zagnoni, M., J. Anderson, and J.M. Cooper, Hysteresis in multiphase microfluidics at a t-junction. Langmuir, 2010. 26(12): p. 9416-9422.
    8. Ganan-Calvo, A.M. and J.M. Gordillo, Perfectly monodisperse microbubbling by capillary flow focusing. Physical Review Letters, 2001. 87(27).
    9. Wehking, J.D., et al., Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction. Microfluidics and Nanofluidics, 2014. 16(3): p. 441-453.
    10. Nunes, J.K., et al., Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. J Phys D Appl Phys, 2013. 46(11).
    11. Schultz, S., et al., High-pressure homogenization as a process for emulsion formation. Chemical Engineering & Technology, 2004. 27(4): p. 361-368.
    12. Vladisavljevic, G.T., I. Kobayashi, and M. Nakajima, Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluidics and Nanofluidics, 2012. 13(1): p. 151-178.
    13. Adams, L.L.A., et al., Single step emulsification for the generation of multi-component double emulsions. Soft Matter, 2012. 8(41): p. 10719-10724.
    14. Kim, S.H., et al., Enhanced-throughput production of polymersomes using a parallelized capillary microfluidic device. Microfluidics and Nanofluidics, 2013. 14(3-4): p. 509-514.
    15. Shum, H.C., et al., Double emulsion templated monodisperse phospholipid vesicles. Langmuir, 2008. 24(15): p. 7651-7653.
    16. Huang, S.H., et al., A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems. Journal of Micromechanics and Microengineering, 2006. 16(11): p. 2336-2344.
    17. Saeki, D., et al., Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Lab on a Chip, 2010. 10(3): p. 357-362.
    18. Chang, F.C. and Y.C. Su, Controlled double emulsification utilizing 3D PDMS microchannels. Journal of Micromechanics and Microengineering, 2008. 18(6).
    19. Abbas, S., et al., Ascorbic acid: Microencapsulation techniques and trends-a review. Food Reviews International, 2012. 28(4): p. 343-374.
    20. Okushima, S., et al., Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004. 20(23): p. 9905-9908.
    21. Utada, A.S., et al., Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett, 2007. 99(9): p. 094502.
    22. Utada, A.S., et al., Dripping, jetting, drops, and wetting: The magic of microfluidics. Mrs Bulletin, 2007. 32(9): p. 702-708.
    23. Utada, A.S., et al., Monodisperse double emulsions generated from a microcapillary device. Science, 2005. 308(5721): p. 537-541.
    24. Savian, A.L., et al., Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug. Materials Science & Engineering C-Materials for Biological Applications, 2015. 46: p. 69-76.
    25. Marionnet, C., et al., Morphogenesis of dermal-epidermal junction in a model of reconstructed skin: beneficial effects of vitamin C. Experimental Dermatology, 2006. 15(8): p. 625-633.
    26. Iida, K., et al., Potene inhibitors of tyrosinase activity and melanin biosynthesis from rheum-officinale. Planta Medica, 1995. 61(5): p. 425-428.
    27. Desai, K.G., C. Liu, and H.J. Park, Characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres as affected by chitosan molecular weight. Journal of Microencapsulation, 2006. 23(1): p. 79-90.
    28. Desai, K.G.H., C. Liu, and H.J. Park, Characteristics of vitamin C immobilized particles and sodium alginate beads containing immobilized particles. Journal of Microencapsulation, 2005. 22(4): p. 363-376.
    29. Shuibing Yang, W.L., Chengmei Liu, Weilin Liu, Guihong Tong, Huijuan Zheng, Wei Zhou, Characterization and bioavailability of vitamin c nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization. Journal of Dispersion Science and Technology, 2012. 33(11): p. 1608-1614.
    30. Spiclin, P., M. Gasperlin, and V. Kmetec, Stability of ascorbic palmitate in topical microemulsions. International Journal of Pharmaceutics, 2001. 222(2): p. 271-279.
    31. Gianeti, M.D., et al., Benefits of combinations of vitamin A, C and E derivatives in the stability of cosmetic formulations. Molecules, 2012. 17(2): p. 2219-2230.
    32. Cheng, S.Y., et al., Cosmetic textiles with biological benefits: Gelatin microcapsules containing vitamin c. International Journal of Molecular Medicine, 2009. 24(4): p. 411-419.
    33. Fathi-Azarbayjani, A., et al., Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. Aaps Pharmscitech, 2010. 11(3): p. 1164-1170.
    34. Yeh, C.-H., K.-R. Chen, and Y.-C. Lin, Developing heatable microfluidic chip to generate gelatin emulsions and microcapsules. Microfluidics and Nanofluidics, 2013. 15(6): p. 775-784.
    35. Liang, H.C., et al., Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A, 2003. 65A(2): p. 271-282.
    36. Sharma, O.P. and T.K. Bhat, DPPH antioxidant assay revisited. Food Chemistry, 2009. 113(4): p. 1202-1205.
    37. Wei, Y., et al., Simple LC method with chemiluminescence detection for simultaneous determination of arbutin and L-ascorbic acid in whitening cosmetics. Chromatographia, 2007. 65(7-8): p. 443-446.
    38. Pisoschi, A.M., et al., Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at pt and carbon paste electrodes. Molecules, 2011. 16(2): p. 1349-1365.
    39. Esch, J.R., J.R. Friend, and J.K. Kariuki, Determination of the vitamin c content of conventionally and organically grown fruits by cyclic voltammetry. International Journal of Electrochemical Science, 2010. 5(10): p. 1464-1474.
    40. Ogunlesi, M., et al., Vitamin c contents of tropical vegetables and foods determined by voltammetric and titrimetric methods and their relevance to the medicinal uses of the plants. International Journal of Electrochemical Science, 2010. 5(1): p. 105-115.
    41. Focsan, A.L., S. Pan, and L.D. Kispert, Electrochemical Study of Astaxanthin and Astaxanthin n-Octanoic Monoester and Diester: Tendency to Form Radicals. Journal of Physical Chemistry B, 2014. 118(9): p. 2331-2339.

    下載圖示 校內:2017-08-28公開
    校外:2017-08-28公開
    QR CODE