| 研究生: |
廖偉舜 Liao, Wei-Shun |
|---|---|
| 論文名稱: |
分子束磊晶成長摻雜氮化鎵奈米柱之結構與壓電電子性質研究 Growth and Piezotronic Properties of Si and Mg doped GaN Nanorods by Molecular Beam Epitaxy |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 氮化鎵 、奈米柱 、分子束磊晶 、奈米發電機 、壓電電子學 |
| 外文關鍵詞: | GaN, Nanorods, MBE, Nanogenerator, piezotronic |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們利用分子束磊晶成長在Si(111)基板的GaN奈米柱,GaN奈米柱都是沿著C軸做成長,且都有非常好的結晶性,並使用Si和Mg進行摻雜,用來製作n型與p型GaN奈米柱陣列。高濃度的摻雜會讓奈米柱的形貌改變,Si摻雜會使奈米柱上寬下窄,而高濃度Mg摻雜會使奈米柱高寬比下降且奈米柱密度上升。我們利用Raman光譜中的L+ peak來定義Si摻雜GaN奈米柱的載子濃度,隨著摻雜濃度增加,L+ peak藍移,載子濃度從5.98x1016 cm-3到1.53x1019 cm-3。在高濃度的Si摻雜我們看到PL光譜有看到Burstein moss effect,光譜有藍移的現象,而在Mg的摻雜PL光譜中,我們發現PL光譜在Mg摻雜後光譜由DAP發光所主導。我們利用AFM來研究其壓電電子學的行為,在奈米發電機的實驗中,我們發現不同摻雜與摻雜濃度的改變對發電效果有很大影響,實驗結果顯示最佳載子濃度大約為5x1018 cm-3,輸出電流最大可達50.22nA。利用AFM探針對奈米柱正向下壓來研究壓電電子學效應。探針下壓力改變,I-V特性曲線也會不同,下壓力增大,在Pt-GaN接面電流會變大,Ag-GaN接面電流變小,這是因為受到外加應力的奈米柱產生的壓電勢影響了蕭特基能障高度,這樣的結果告訴我們電子的傳輸型為可由外加應力來調變。另外,隨著摻雜濃度增加,蕭特基能障改變量就越小,這是由於屏蔽效應消除了壓電勢的結果。本實驗結果對未來不論在製作出高輸出功率的奈米發電機、壓電電子學元件或是壓電光電子學元件都有非常大的幫助。
In this study, the Si and Mg doped GaN nanorods(NRs) were grown on the n-type Si(111) by plasma assisted molecular beam epitaxy (PAMBE). The presence of Si and Mg influenced the GaN NRs growth. At high Si concentrations, Si-induced nucleation on nonpolar facets results in strong NR tapering,and the presence of Mg leads to a continuous increase of the radial growth rate and increase the NRs density. In Raman spectrum, the L+ phonon peak is strongly upshifted indicating a higher free-carrier concentration for Si-doped NWs, the L+ peak help us to determine the doping level of Si doped GaN NRs from 5.98x1016 to 1.53x1019 cm-3. PL spectrum show the Burstein–Moss effect in the heavy doping of Si:GaN and the DAP peak dominate the PL spectrum in Mg doped GaN. Furthermore, we investigated their energy harvesting and piezotronic effect by AFM. The output current of nanogenerator had great influenced on carrier concentration. According to the result of this research, the best condition for high output current is about 5x1018 cm-3, the maximum output current can be 50.22nA. The current-voltage characteristics of the NWs were studied by positioning an AFM tip on top of an individual NR. By applying normal force on the NR, the Schottky barrier between the Pt/GaN and Ag/GaN were found to be changed due to the piezotronic effect. On the basis of the piezoelectric and piezotronic properties investigated in this study, GaN NW arrays have promising application potentials in the piezotronic devices and piezo-phototronic areas.
1. Mitate, T.; Sonoda, Y.; Kuwano, N. Physica Status Solidi a-Applied Research 2002, 192, (2), 383-388.
2. Gil, B., Group III Nitride Semiconductor Compounds Physics and Applications. Oxford: New York, 1998.
3. Debnath, R. K.; Meijers, R.; Richter, T.; Stoica, T.; Calarco, R.; Luth, H. Appl Phys Lett 2007, 90, (12).
4. Ruth, V.; Hirth, J. P. J Chem Phys 1964, 41, (10), 3139-&.
5. Dubrovskii, V. G.; Cirlin, G. E.; Soshnikov, I. P.; Tonkikh, A. A.; Sibirev, N. V.; Samsonenko, Y. B.; Ustinov, V. M. Phys Rev B 2005, 71, (20).
6. Tchernycheva, M.; Sartel, C.; Cirlin, G.; Travers, L.; Patriarche, G.; Harmand, J. C.; Dang, L. S.; Renard, J.; Gayral, B.; Nevou, L.; Julien, F. Nanotechnology 2007, 18, (38).
7. Hsiao, C. L.; Tu, L. W.; Chi, T. W.; Seo, H. W.; Chen, Q. Y.; Chu, W. K. J Vac Sci Technol B 2006, 24, (2), 845-851.
8. Songmuang, R.; Landre, O.; Daudin, B. Appl Phys Lett 2007, 91, (25).
9. Kishino, K.; Hoshino, T.; Ishizawa, S.; Kikuchi, A. Electron Lett 2008, 44, (13), 819-U55.
10. Ishizawa, S.; Kishino, K.; Kikuchi, A. Appl Phys Express 2008, 1, (1).
11. Akihiko Kikuchi, M. T., Kyoko Miwaa and Katsumi Kishino. Proc. of SPIE 2006, 6129, 612905.
12. Calleja, E.; Ristic, J.; Fernandez-Garrido, S.; Cerutti, L.; Sanchez-Garcia, M. A.; Grandal, J.; Trampert, A.; Jahn, U.; Sanchez, G.; Griol, A.; Sanchez, B. Phys Status Solidi B 2007, 244, (8), 2816-2837.
13. Harima, H. Journal Of Physics: Condensed Matter 2002, 14.
14. Ahmad, I.; Holtz, M.; Faleev, N. N.; Temkin, H. J Appl Phys 2004, 95, (4), 1692-1697.
15. Jeganathan, K.; Debnath, R. K.; Meijers, R.; Stoica, T.; Calarco, R.; Grutzmacher, D.; Luth, H. J Appl Phys 2009, 105, (12).
16. Park, M.; Cuomo, J. J.; Rodriguez, B. J.; Yang, W. C.; Nemanich, R. J.; Ambacher, O. J Appl Phys 2003, 93, (12), 9542-9547.
17. Wang, Z. L.; Song, J. H. Science 2006, 312, (5771), 242-246.
18. Wang, X.; Song, J.; Zhang, F.; He, C.; Hu, Z.; Wang, Z. Adv Mater 2010, 22, (19), 2155-2158.
19. Su, W. S.; Chen, Y. F.; Hsiao, C. L.; Tu, L. W. Appl Phys Lett 2007, 90, (6), 063110.
20. Gao, Y.; Wang, Z. L. Nano Lett 2007, 7, (8), 2499-2505.
21. Gao, Z. Y.; Zhou, J.; Gu, Y. D.; Fei, P.; Hao, Y.; Bao, G.; Wang, Z. L. J Appl Phys 2009, 105, (11).
22. Sun, C. L.; Shi, J. A.; Wang, X. D. J Appl Phys 2010, 108, (3).
23. Wang, Z. L. Nano Today 2010, 5, (6), 540-552.
24. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Nat Nanotechnol 2010, 5, (5), 366-373.
25. Zhu, G. A.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Nano Lett 2010, 10, (8), 3151-3155.
26. Hu, Y. F.; Zhang, Y.; Xu, C.; Zhu, G. A.; Wang, Z. L. Nano Lett 2010, 10, (12), 5025-5031.
27. Wang, Z. L. Adv Funct Mater 2008, 18, (22), 3553-3567.
28. Liu, J.; Fei, P.; Song, J. H.; Wang, X. D.; Lao, C. S.; Tummala, R.; Wang, Z. L. Nano Lett 2008, 8, (1), 328-332.
29. Zhou, Y. S.; Wang, K.; Han, W. H.; Rai, S. C.; Zhang, Y.; Ding, Y.; Pan, C. F.; Zhang, F.; Zhou, W. L.; Wang, Z. L. Acs Nano 2012, 6, (7), 6478-6482.
30. Lu, M. Y.; Song, J. H.; Lu, M. P.; Lee, C. Y.; Chen, L. J.; Wang, Z. L. Acs Nano 2009, 3, (2), 357-362.
31. Huang, C. T.; Song, J.; Lee, W. F.; Ding, Y.; Gao, Z.; Hao, Y.; Chen, L. J.; Wang, Z. L. Journal of the American Chemical Society 2010, 132, (13), 4766-4771.
32. Huang, C. T.; Song, J.; Tsai, C. M.; Lee, W. F.; Lien, D. H.; Gao, Z.; Hao, Y.; Chen, L. J.; Wang, Z. L. Adv Mater 2010, 22, (36), 4008-4013.
33. Hung, S. C. J Electrochem Soc 2011, 158, (12), H1265-H1269.
34. Lin, L.; Lai, C. H.; Hu, Y.; Zhang, Y.; Wang, X.; Xu, C.; Snyder, R. L.; Chen, L. J.; Wang, Z. L. Nanotechnology 2011, 22, (47), 475401.
35. Liu, J. Q.; Huang, J.; Gong, X. J.; Wang, J. F.; Xu, K.; Qiu, Y. X.; Cai, D. M.; Zhou, T. F.; Ren, G. Q.; Yang, H. Crystengcomm 2011, 13, (19), 5929-5935.
36. Chen, C. Y.; Zhu, G.; Hu, Y.; Yu, J. W.; Song, J.; Cheng, K. Y.; Peng, L. H.; Chou, L. J.; Wang, Z. L. ACS NANO 2012, 6, (6), 5687-92.
37. 王中林, 壓電電子學與壓電光電子學. 科學: 2012.
38. Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Nano Lett 2006, 6, (12), 2768-2772.
39. He, J. H.; Hsin, C. L.; Liu, J.; Chen, L. J.; Wang, Z. L. Adv Mater 2007, 19, (6), 781-.
40. Wang, Z. L. Mater Today 2007, 10, (5), 20-28.
41. Wang, Z. L. Adv Mater 2007, 19, (6), 889-892.
42. Zhang, Y.; Liu, Y.; Wang, Z. L. Adv Mater 2011, 23, (27), 3004-3013.
43. Shao, Z. Z.; Wen, L. Y.; Wu, D. M.; Zhang, X. A.; Chang, S. L.; Qin, S. Q. J Appl Phys 2010, 108, (12).
44. Zhou, Y. S.; Hinchet, R.; Yang, Y.; Ardila, G.; Songmuang, R.; Zhang, F.; Zhang, Y.; Han, W.; Pradel, K.; Montes, L.; Mouis, M.; Wang, Z. L. Adv Mater 2013, 25, (6), 883-888.
45. 許廣元, 分子束磊晶成長三族氮化物奈米結構與物理性質之研究. 成功大學: 2010.
46. Furtmayr, F.; Vielemeyer, M.; Stutzmann, M.; Arbiol, J.; Estrade, S.; Peiro, F.; Morante, J. R.; Eickhoff, M. J Appl Phys 2008, 104, (3).
47. Stoica, T.; Sutter, E.; Meijers, R. J.; Debnath, R. K.; Calarco, R.; Luth, H.; Grutzmacher, D. Small 2008, 4, (6), 751-4.
48. Hestroffer, K.; Leclere, C.; Bougerol, C.; Renevier, H.; Daudin, B. Phys Rev B 2011, 84, (24).
49. Lu, W.; Aplin, D.; Clawson, A. R.; Yu, P. K. L. J Vac Sci Technol A 2013, 31, (1).
50. Nakamura, S. Jpn J Appl Phys 2 1991, 30, (10A), L1705-L1707.
51. Chin, V. W. L.; Tansley, T. L.; Ostochan, T. J Appl Phys 1994, 75, (11), 7365-7372.
52. V. V. Mamutin, V. A. V., V. N. Jmerik, V. V. Ratnikov, V. Y. Davy- dov, N. A. Cherkashin, S. V. Ivanov, G. Pozina, J. P. Bergman, and B.; Monemar. Procedings Of The International Workshop On Nitride Semiconductors 2000, 1, 413-416.
53. Irmer, G.; Toporov, V. V.; Bairamov, B. H.; Monecke, J. Physica Status Solidi B-Basic Research 1983, 119, (2), 595-603.
54. Harima, H. J Phys-Condens Mat 2002, 14, (38), R967-R993.
55. Strite, S.; Morkoc, H. J Vac Sci Technol B 1992, 10, (4), 1237-1266.
56. Wang, F.; Chen, A. B. Phys Rev B 2001, 63, (12).
57. Reshchikov, M. A.; Morkoc, H. J Appl Phys 2005, 97, (6).
58. Iliopoulos, E.; Doppalapudi, D.; Ng, H. M.; Moustakas, T. D. Appl Phys Lett 1998, 73, (3), 375-377.
59. Li, W.; Li, A. Z. Thin Solid Films 2001, 401, (1-2), 279-283.
60. Jeong, T. S.; Kim, J. H.; Han, M. S.; Lim, K. Y.; Youn, C. J.; Kim, J. O.; Jung, Y. J.; Lee, H. J Cryst Growth 2005, 280, (3-4), 401-407.
61. Khan, M. A.; Kuznia, J. N.; Vanhove, J. M.; Olson, D. T.; Krishnankutty, S.; Kolbas, R. M. Appl Phys Lett 1991, 58, (5), 526-527.
62. Liu, X. L.; Wang, L. S.; Lu, D. C.; Wang, D.; Wang, X. H.; Lin, L. Y. J Cryst Growth 1998, 189, 287-290.
63. Li, Z. F.; Lu, W.; Ye, H. J.; Chen, Z. H.; Yuan, X. Z.; Dou, H. F.; Shen, S. C.; Li, G.; Chua, S. J. J Appl Phys 1999, 86, (5), 2691-2695.
64. Halidou, I.; Benzarti, Z.; Chine, Z.; Boufaden, T.; El Jani, B. Microelectr J 2001, 32, (2), 137-142.
65. Fritze, S.; Dadgar, A.; Witte, H.; Bugler, M.; Rohrbeck, A.; Blasing, J.; Hoffmann, A.; Krost, A. Appl Phys Lett 2012, 100, (12).
66. Tchoulfian, P.; Donatini, F.; Levy, F.; Amstatt, B.; Ferret, P.; Pernot, J. Appl Phys Lett 2013, 102, (12).
67. Wang, X. B.; Song, J. H.; Zhang, F.; He, C. Y.; Hu, Z.; Wang, Z. L. Adv Mater 2010, 22, (19), 2155-8.
68. Dussaigne, A.; Damilano, B.; Brault, J.; Massies, J.; Feltin, E.; Grandjean, N. J Appl Phys 2008, 103, (1).
69. Nakamura, S.; Senoh, M.; Mukai, T. Jpn J Appl Phys 2 1991, 30, (10A), L1708-L1711.
70. Simon, J.; Jena, D. Phys Status Solidi A 2008, 205, (5), 1074-1077.
71. Lieten, R. R.; Motsnyi, V.; Zhang, L.; Cheng, K.; Leys, M.; Degroote, S.; Buchowicz, G.; Dubon, O.; Borghs, G. J Phys D Appl Phys 2011, 44, (13).
72. Sze, S. M.; Ng, K. K., Physics of semiconductor devices. 3rd ed.; Wiley-Interscience: Hoboken, N.J., 2007; p x, 815 p.
73. Han, W. H.; Zhou, Y. S.; Zhang, Y.; Chen, C. Y.; Lin, L.; Wang, X.; Wang, S. H.; Wang, Z. L. Acs Nano 2012, 6, (5), 3760-3766.
74. Zhou, Y. S.; Hinchet, R.; Yang, Y.; Ardila, G.; Songmuang, R.; Zhang, F.; Zhang, Y.; Han, W. H.; Pradel, K.; Montes, L.; Mouis, M.; Wang, Z. L. Adv Mater 2013, 25, (6), 883-888.
75. Liu, Y.; Kauser, M. Z.; Ruden, P. P.; Hassan, Z.; Lee, Y. C.; Ng, S. S.; Yam, F. K. Appl Phys Lett 2006, 88, (2).
校內:2018-08-28公開