簡易檢索 / 詳目顯示

研究生: 王光謙
Wang, Guang-Cian
論文名稱: 黏晶機頂針對薄形晶片應力特性之分析
The effect of die bonder needle on stress characteristics of thin chips
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 晶片封裝堆疊製程延性破壞有限元素法DAF
外文關鍵詞: Stack die, Finite element simulation, DAF, chip crack
相關次數: 點閱:166下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鑑於記憶卡市場趨於輕薄及高容量發展趨勢,為了增加容量故需在有限
    封裝空間增加堆疊層數,才能增加記憶卡容量,故須將晶片厚度薄化才能堆
    疊更多晶片,而薄晶片強度很脆弱,容易在製程中造成破裂。本文利用有限
    元素模擬軟體ANSYS來推測黏晶機頂針對薄形晶片應力之特性,以期作為
    頂針排列之依據,以改善晶片破裂,提升良率。為驗証ANSYS模擬結果與
    實驗結果相近,本文收集晶片強度測試實驗結果並透過ANSYS軟體模擬
    Bending test,比對實驗數據與模擬數據以做為驗証之依據。
      本文首先設計魚骨圖列出所有影響晶片破裂的原因進行單一因子分析求得對晶片應力之影響;針對頂針造成晶片破裂之各項因子如針中心點至晶片邊緣的距離、頂針上升高度、DAF黏度、頂針的圓角...等等進行分析模擬,以求得黏晶機頂針對薄形晶片應力特性,對於各項因子之模擬結果如下述:
    1. 頂針中心點至晶片邊緣的距離,模擬結果顯示頂針與晶片邊緣距離長時
    所呈現應力較大,距離短時呈現的應力較小。
    2. 頂針高度,頂針越高則晶片承受的應力將增加,但在求解過程中最大應
    力會在晶片與膠紙完全剝離時不再增加。
    3. DAF黏度,模擬結果顯示黏度與應力呈正比現象,黏度越高實際作業中 
      將容易發生 Pick up miss與破裂。
    4. 頂針中心點至頂針中心點之間的間距,模擬結果顯示各種間距對晶片的
    應力差距甚微但可以得到針距越近則應力值較大。
    5. 吸嘴真空值,吸嘴孔徑0.3mm與不冋真空值模擬所得到應力值非常微小
    將不會對晶片有任何應力影響。
    6. 頂針圓角:模擬結果得知圓角越細對晶體產生的應力越大。
    關鍵字:晶片封裝堆疊製程、延性破壞、有限元素法、DAF。

    The trend of flash memory cards is light and high capacity packages to meet the requirement of customers. Hence, chip thinning for more stack layers is necessary. Chip thinning poses challenges to many related package process, including the grinder, die bonder, wire bonder as the chip thickness is 1mil or smaller, cracks can easily happen during the die attach assembly process.
      In this study, the ANSYS finite element simulation software is used to estimate stress characteristics of thin chip so that needle arrangements can be made to reduce the chip crack and to be promote yields. Some bending test experiments were employed to verify the simulation results. The simulation parameters include the gap between needle to die edge, ejector height, and DAF (Die attach film) viscosity, etc.
    The simulation results show that the ejector height, gap between needle to die edge, and DAF adhesive strength were the significant factors to the stress of the chip.

    Keywords : Stack die、Finite element simulation、DAF, chip crack.

    目錄 摘要...………………………………………………………………………………I ABSTRACT.………………………………………………………………………II 誌謝...……………………………………………………………………………VII 目錄..……………………………………………………………………………VIII 表目錄……….……………………………………………………………………X 圖目錄....…………………………………………………………………………XI 第一章 緒論..……………………………………………………………………1   1-1 前言.……………………………………………………………………1 1-2 文獻回顧.………………………………………………………………1 1-3 研究動機與目的.………………………………………………………6 1-4 研究方法….……………………………………………………………7 第二章 記憶體元件之封裝與破壞. ……………………………………………8 2-1 封裝製程.………………………………………………………………8 2-2 晶粒堆疊製程...........…………………………………………………11 2-3 黏晶機與頂針結構...…………………………………………………12 2-4 DAF材料結構與特性...………………………………………………14 第三章 實驗之規劃與檢測方法………………………………………………18   3-1 實驗方法...……………………………………………………………18 3-1-1 目標函數………………………………………………………20 3-1-2 影響品質特性目標函數之控制因子…………………………21 3-2 ANSYS模擬控制因子與水準.………………………………………21 3-3 因子說明...……………………………………………………………22 3-4 因子圖示說明...………………………………………………………22第四章 晶片強度測試實驗結果與討論………………………………………23 4-1 晶片強度測試實驗...…………………………………………………23 4-1-1 晶片厚度6mil強度測試結果...………………………………23 4-1-2 晶片厚度9mil強度測試結果...………………………………24 4-1-3 晶片厚度12mil強度測試結果.………………………………25 4-2 晶片強度測試信賴區間...……………………………………………26 4-2-1 晶片厚度6mil強度測試信賴區間...…………………………26 4-2-2 晶片厚度9mil強度測試信賴區間...…………………………26 4-2-3 晶片厚度12mil強度測試信賴區間.…………………………27 第五章 模擬實驗結果與討論…………………………………………………28 5-1 晶片強度模擬測試...…………………………………………………28 5-2 晶片強度模擬結論...…………………………………………………31 5-3 頂針機構與晶圓全域模擬示意圖...…………………………………32 5-4 單一因子模擬結果...…………………………………………………34   5-4-1 頂針中心點至晶片邊緣距離…………………………………35 5-4-2 頂針高度………………………………………………………39 5-4-3 DAF黏度...……………………………………………………44 5-4-4 頂針中心點至頂針中心點之間的間距………………………49 5-4-5 吸嘴真空值……………………………………………………53 5-4-6 頂針的圓角……………………………………………………59 第六章 結論與未來展望………………………………………………………63 6-1 結論...…………………………………………………………………63 6-2 未來展望...……………………………………………………………65 參考文獻…………………………………………………………………………66 表目錄 表2-1 DAF各層結構厚度..……………………………………………………16 表3-1 材料特性表...……………………………………………………………20 表3-2 主要因子與水準...………………………………………………………21 表3-3 因子說明...………………………………………………………………22 表4-1 晶片厚度6mil強度測試結果..…………………………………………23 表4-2 晶片厚度9mil強度測試結果 …………………………………………24 表4-3 晶片厚度12mil強度測試結果…………………………………………25 表5-1 實驗數據與模擬數據...…………………………………………………31 表5-2 頂針中心點至晶片邊緣距離水準數...…………………………………38 表5-3  頂針高度水準數….……………………………………………………42 表5-4  DAF黏度水準數………………………………………………………47 表5-5 頂針中心點至頂針中心點之間的間距水準數...………………………52 表5-6 吸嘴真空值水準數...……………………………………………………57 表5-7 頂針圓角度水準數...……………………………………………………62 圖目錄 圖1-1 晶片與頂針.………………………………………………………………1 圖1-2 晶片破裂.…………………………………………………………………1 圖1-3 晶片剝離角度.……………………………………………………………3 圖1-4 Pull force vs. Peeling angle.………………………………………………3 圖1-5 Slider peel method..………………………………………………………5 圖1-6 SEM micrograph of chip backside edge………………………….………6 圖2-1 封裝流程圖..…………………………………………….………………10 圖2-2 晶圓...……………………………………………………………………11 圖2-3 基板...……………………………………………………………………11 圖2-4 晶片與基板結合...………………………………………………………11 圖2-5 Die Bonder機台設備……………………………………………………12 圖2-6 Die bonder細部機構……………………………………………………12 圖2-7 頂針、頂針蓋與晶片放大圖……………………………………………13 圖2-8 黏晶機機台運作...………………………………………………………13 圖2-9 膠紙與晶片剝離方向...…………………………………………………14 圖2-10 DAF應用………………………………………………………………15 圖2-11 12"晶圓與材料...………………………………………………………16 圖2-12 DAF各層結構…………………………………………………………17 圖3-1 實驗架構流程..………………………………………………….………18 圖3-2 Bending tester..…………………………………………………..………19 圖3-3 晶圓量測位置 ………………………………………………….………19 圖3-4 魚骨圖 ………………………………………………………….………21 圖3-5 因子圖示說明 ………………………………………………….………22 圖4-1 晶片厚度6mil強度測試信賴區間..……………………………………26 圖4-2 晶片厚度9mil強度測試信賴區間.…………………………….………26 圖4-3 晶片厚度12mil強度測試信賴區間……………………………………27 圖5-1 Die thickness 6mil,Equivalent Stress with Total deformation………….28 圖5-2 Die thickness 9mil,Equivalent Stress with Total deformation……….…29 圖5-3 Die thickness 12mil,Equivalent Stress with Total deformation……….30 圖5-4 晶圓模型與網格 ……………………………………………………….32 圖5-5 頂針對膠紙產生的形變 ……………………………………………….32 圖5-6 晶片之間在切割膠紙上的應力 ……………………………………….33 圖5-7  頂針對膠紙與晶片剝離……………………………………………….33 圖5-8 Gap between needle to die edge - 0.5mm.………………………………35 圖5-9 Gap between needle to die edge - 0.6mm.………………………………36 圖5-10 Gap between needle to die edge - 0.7mm...……………………………37 圖5-11 頂針中心點至晶片邊緣距離應力分佈…… …………………………38 圖5-12 Ejector height–0.1mm……………………………………………….…39 圖5-13 Ejector height–0.15mm ……………………………………………..…40 圖5-14 Ejector height–0.18mm ……………………………………………..…41 圖5-15 頂針高度應力分佈……………………………………………….……42 圖5-16 Flying die(抛晶)………………………………………………………43 圖5-17 DAF adhesive strength - 0.03N/mm...…………………………………44 圖5-18 DAF adhesive strength - 0.045N/mm.…………………………………45 圖5-19 DAF adhesive strength - 0.06N/mm...…………………………………46 圖5-20 DAF黏度應力分佈……………………………………………………47 圖5-21 Needle gap–1.0mm ……………………………………………………49 圖5-22 Needle gap–1.1mm ……………………………………………………50 圖5-23 Needle gap–1.2mm ……………………………………………………51 圖5-24 針中心點至頂針中心點之間的間距應力分佈………………………52 圖5-25 模擬吸嘴真空吸晶片……………………………………….…………53 圖5-26 Rubber tip vacuum : -80mmHg... ... ... ... ..........………………………54 圖5-27 Rubber tip vacuum : -160mmHg………………………………………55 圖5-28 Rubber tip vacuum : -240mmHg………………………………………56 圖5-29 吸嘴真空值應力分佈……………………………….…………………57 圖5-30 吸嘴孔徑………………………………………….……………………58 圖5-31 Needle radius 0.2………………………………………………………59 圖5-32 Needle radius 0.15.………………………….…………………………60 圖5-33 Needle radius 0.1.… ...…………………………………………………61 圖5-34 頂針圓角度應力分佈.…………………………………………………62

    1. 施應慶、陳友寧、 陳守龍、吳恩柏、蔡振榮及邵清安,“研磨製程對晶片
    強度的影響“,中國機械工程學會第18屆全國學術研討會論文集,(新興
    工程技術)第367-374頁,2001。
    2. 饒俊龍,“黏晶機頂針機構之最佳設計與實作” 國立交通大學工學院精密
    與自動化工程學程,碩士論文,2010。
    3. 藍源富,“懸臂式疊晶於黏彈性薄膜黏晶膠下打線接合性研究”國立成功大
    學工程科學糸,碩士論文,2006。
    4. 林勇志,“植晶機之取晶過程分析” 國立成功大學機械工程學系, 博士論
    文,2005。
    5. J. D. Wu , C. Y. Huang , C. C. Liao , “Fracturestrength characterization and
    failure analysis of silicon dies”, Microelectronics Reliability, 43, pp. 269-277,
    2003.
    6. K. Subramanian, S. Ramanath, M. Tricad, “Mechanisms of Material
    Removal in the Precision Production Grinding of Ceramics”, Journal of
    Manufacturing Sciences and Engineering, 199, pp.509-519, 1997.
    7. I. Inasaki, “Grinding of Hard and Brittle Material”, Annals of the CIRP, 36,
    pp. 463-471, 1987.
    8. J. Medding, R. Stalder, M. Niederhauser, P.Stoessel, “Thin Die Bonding Techniques”, Switzerland, 2004.
    9. M. Feil, C. Adler, D. Hemmetzberger, M. Konig, K. Bock, “The Challenge of Ultra Thin Chip Assembly”, Fraunhofer-Institute for Reliability and Microintegration, Munich Branch, Germany, 2004.
    10. S. H. Looe, S. W. Wang, “Challenges & Solutions in the Die Attach Process for Micro Thin Die”, ON Semiconductor Lot 122, Senawang Industrial Estate, NSDK, West Malaysia, 2008.
    11. S.N. Song, H.H Tan, P.L. Ong, “Die Attach Film Application in Multi Die
      Stack Package”, United Test & Assembly Center Ltd (UTAC), Singapore,
      2005.
    12. S. Corbett, P. Ongley, “Innovations In Thermoplastic Die Attach   Adhesives For Microelectronic Packaging” , Rhode Island, USA & Bristol,
      UK, 1997.
    13. Z. Abdullah, L. Vigneswaran, A. Ang, G. Z. Yuan, “Die Attach Capability on Ultra Thin Wafer Thickness for Power Semiconductor”, Infineon Technologies (M) Sdn Bhd, 2012.
    14. S. C. Kheng, M. Teo, .C. Lee, “Assessment of Die Attach Film for Thin Die and SiP Applications”, Infineon Technologies Asia Pacific Pte Ltd Assembly & Interconnect Technology, Putrajaya, Malaysia, 2006.
    15. K. Kitaichi, H. Shimamoto, C. Miyazaki, Y. Abe, S. Saito, S. Yasunaga , “Development of high accuracy wafer thinning and pickup technology for thin wafer”, Association of Super-Advanced Electronics Technology (ASET), Japan, 2009.
    16. S. Takyu, M. Kiritani, T. Kurosawa, and N. Shimizu, “The Development of Cleaving – DBG + CMP Process”, Toshiba Corporation Semiconductor Company, Komukai Toshiba–Cho, Saiwai-Ku, Kawasaki, Japan, 2010.
    17. Die attach film, http://www.nitto.com/
    18. 李輝煌,田口方法品質設計的原理與實務,國立成功大學工程科學系,
       2012。
    19. Characteristic of material, http://www.matweb.com/

    無法下載圖示 校內:2020-02-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE