| 研究生: |
蔡曜陽 Tsai, Yao-Yang |
|---|---|
| 論文名稱: |
即時物理模擬三維兩腳角色動畫 Real-time Physics-based 3D Biped Character Simulation and Animation |
| 指導教授: |
李同益
Lee, Tong-Yee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 倒單擺 、物理模擬 、動作捕捉器 、三維 、速度驅動控制器 |
| 外文關鍵詞: | 3D, MOCAP, inverted pendulum model, dynamic environments |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著物理模擬技術的成熟,目前相當多電影與遊戲都加入物理模擬技術,使物件之間互動更為自然。但是要在三維物理模擬環境下,重現動作捕捉器動畫相當困難,因為不容易維持模擬人體的平衡。
本篇論文提出新方法,可以在物理模擬環境下,即時(real-time)控制三維兩腳角色重現目標動作捕捉器動畫,並動態對外界影響做出反應。本篇論文是利用倒單擺代表整個人體,並即時去改變動作路徑,使模擬人體身體與動作捕捉動畫人體維持相同的狀態。除了重現動作捕捉器記錄下來的動畫外,在不同的地形與外力影響下,亦可維持平衡。此外,用於控制人體做出目標姿勢的技術中,最常見的控制技術是比例微分控制器(Proportional - Derivative controllers)。但是此種控制器需要微調參數,不同動作的參數皆不同。因此本篇論文提出一個速度驅動控制器(velocity-driven),只需要粗略設定一組參數,即可做出各種類型的動畫。
本篇論文提出的控制器,可以在即時(real-time)運算下,控制模擬的人體跟隨目標動畫。並可以隨時改變地形、給予外力、改變姿勢,或使用者給予的動作限制,皆可立即(real-time)反應在模擬人體上,並保持平衡。
This paper present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real-time. Our approach utilizes an inverted pendulum model to on-line adjust the desired motion trajectory from the input motion capture data. This on-line adjustment produces physically-plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to follow in dynamics simulation. Rather than using the Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion following control adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically-correct full body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that MOCAP-following with real-time response animation can be achieved easily. Besides, physically-plausible motion style editing and automatic motion transition can also be generated naturally.
[1] ABE, Y., DA SILVA, M., AND POPOVI ´C, J. 2007. Multiobjective control with frictional contacts. In SCA 2007, 249–258.
[2] BARAFF, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In ACM SIGGRAPH 1994, 23–34.
[3] BARAFF, D. 1996. Linear-time dynamics using lagrange multipliers. In ACM SIGGRAPH 1996, 137–146.
[4] BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal processing. In Proceedings of ACM SIGGRAPH 95, Annual Conference Series, ACM SIGGRAPH, 97–104.
[5] COHEN, M. F. 1992. Interactive space-time control for animation. ACM SIGGRAPH 1992, 293–302.
[6] Cooper S., Hertzmann A., Popovi’c Z. 2007 Active Learning for Real-time Motion Controllers. ACM Transactions on Graphics 26, 3
[7] DA SILVA, M., ABE, Y., AND POPOVI ´C, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum 27, 2, 371–380.
[8] DA SILVA, M., ABE, Y., AND POPOVI ´C, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics 27, 3.
[9] FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. Composable controllers for physics-based character animation. In ACM SIGGRAPH 2001, 251–260.
[10] FANG, A. C., AND POLLARD, N. S. 2003. Effcient synthesis of physically valid human motion. ACM Trans. Graph. 26, 3,417–426.
[11] FLASH, T., AND HOGAN, N. 1985. The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience 5, 7, 1688–1703.
[12] GLEICHER, M. 1998. Retargeting motion to new characters. In Proceedings 0f ACM SIGGRAPH 98, Annual Conference Series, ACM SIGGRAPH, 33–42.
[13] HARRY, G. 1988. Anthropometry and mass distribution for human analogues v volume i: Military male aviator.
[14] HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND O’BRIEN, J. F. 1995. Animating human athletics. In ACM SIGGRAPH 1995, 71–78.
[15] HODGINS, J. K. 1991. Biped gait transitions. Proceedings of the IEEE International Conference on Robotics and Automation.
[16] KAJITA, S., KANEHIRO, F., KANEKO, K., YOKOI, K., AND HIRUKAWA, H. 2001. The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. IEEE/RSJ International Conference on Intelligent Robots and Systems 1, 239–246.
[17] KITAMURA, S., KUREMATSU, Y., AND IWATA, M. 1990. Motion generation of a biped locomotive robot using an inverted pendulum model and neural networks. Decision and Control, 1990.,Proceedings of the 29th IEEE Conference on 6, 3308–3312.
[18] KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. ACM Trans. Graph. 21, 3, 473–482.
[19] KUO, A. D., DONELAN, J. M., AND RUINA, A. 2005. Energetic consequences of walking like an inverted pendulum: Step-to-step transitions. Exercise and Sport Sciences Reviews 33, 2, 88–97.
[20] KUO, A. D. 1999. Stabilization of lateral motion in passive dynamic walking. International Journal of Robotics Research 18,9, 917–930.
[21] LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND POLLARD, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21, 3, 491–500.
[22] LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of ACM SIGGRAPH 99, Annual Conference Series, ACM SIGGRAPH, 39–48.
[23] LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture: a two-level statistical model for character motion synthesis. vol. 21, 465–472.
[24] LIU, C. K., HERTZMANN, A., AND POPOVI ´C, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3, 1071–1081.
[25] Manoonpong, P.; Geng, T.; Kulvicius, T.; Bernd Porr; Woergoetter, F. (2007). Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning. PLoS (Public Library of Science) Computational Biology (PLoS Comput Biol), 3(7), e134. doi:10.1371/journal.pcbi.0030134
[26] Marcus G. Pandy and Frank C. Anderson. Three-dimensional computer simulation of jumping and walking using the same model. In Proceedings of the VIIth International Symposium on Computer Simulation in Biomechanics, August 1999.
[27] Marcus G. Pandy, Felix E. Zajac, Eunsup Sim, and William S. Levine. An optimal control model for maximum-height human jumping. Journal of Biomechanics, 23(12):1185–1198, 1990.
[28] MCCANN, J., AND POLLARD, N. 2007. Responsive characters from motion fragments. ACM Trans. Graph. 26, 3, 6:1–6:7.
[29] MIURA, H., AND SHIMOYAMA, I. 1984. Dynamic walk of a biped. International Journal of Robotics Research 3, 2, 60–74.
[30] Murty, Katta G., “Linear Complementarity, Linear and Nonlinear Programming,” available online at http://ioe.engin.umich.edu/people/fac/books/murty/ linear_complementarity_webbook/, 1988
[31] POPOVI ´C, Z., AND WITKIN, A. 1999. Physically based motion transformation. ACM SIGGRAPH 1999 (Aug.), 11–20.
[32] PULLEN, K., AND BREGLER, C. 2000. Animating by multi-level sampling. In IEEE Computer Animation Conference, CGS and IEEE, 36–42.
[33] RAIBERT, M. H., AND HODGINS, J. K. 1991. Animation of dynamic legged locomotion. SIGGRAPH 1991, 349–358.
[34] RAIBERT, M. H. 1996. Legged Robots that Balance. MIT Press.
[35] ROSE, C., COHEN, M., AND BODENHEIMER, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Application 18, 5, 32–40.
[36] R. Featherstone. Robot Dynamics Algorithms. Kluwer, 1987.
[37] SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23,3, 514–521.
[38] SOK, K. W., KIM, M., AND LEE, J. 2007. Simulating biped behaviors from human motion data. In ACM SIGGRAPH’07, 107.
[39] SRINIVASAN, M., AND RUINA, A. 2006. Computer optimization of a minimal biped model discovers walking and running. Nature 439, 7072 (Jan), 72–75.
[40] SULEJMANPA ˇSI ´C, A., AND POPOVI ´C, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 1, 165–179.
[41] TREUILLE, A., LEE, Y., AND POPOVI ´C, Z. 2007. Near-optimal character animation with continuous control. ACM Trans. Graph. 26, 3, 7:1–7:7.
[42] WILEY, D., AND HAHN, J. 1997. Interpolation synthesis of articulated figure motion. IEEE Computer Graphics and Application 17, 6, 39–45.
[43] WITKIN, A., AND KASS, M. 1988. Space-time constraints. ACM SIGGRAPH 1988, 159–168.
[44] WITKIN, A., AND POPOVI ´C, Z. 1995. Motion warping. In Proceedings of ACM SIGGRAPH 95, Annual Conference Series, ACM SIGGRAPH, 105–108.
[45] YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbicon: simple biped locomotion control. In ACM SIGGRAPH’07, 105.
[46] ZORDAN, V. B., AND HODGINS, J. K. 2002. Motion capture-driven simulations that hit and react. In SCA 2002, 89–96.