簡易檢索 / 詳目顯示

研究生: 蔡曜陽
Tsai, Yao-Yang
論文名稱: 即時物理模擬三維兩腳角色動畫
Real-time Physics-based 3D Biped Character Simulation and Animation
指導教授: 李同益
Lee, Tong-Yee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 61
中文關鍵詞: 倒單擺物理模擬動作捕捉器三維速度驅動控制器
外文關鍵詞: 3D, MOCAP, inverted pendulum model, dynamic environments
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物理模擬技術的成熟,目前相當多電影與遊戲都加入物理模擬技術,使物件之間互動更為自然。但是要在三維物理模擬環境下,重現動作捕捉器動畫相當困難,因為不容易維持模擬人體的平衡。
    本篇論文提出新方法,可以在物理模擬環境下,即時(real-time)控制三維兩腳角色重現目標動作捕捉器動畫,並動態對外界影響做出反應。本篇論文是利用倒單擺代表整個人體,並即時去改變動作路徑,使模擬人體身體與動作捕捉動畫人體維持相同的狀態。除了重現動作捕捉器記錄下來的動畫外,在不同的地形與外力影響下,亦可維持平衡。此外,用於控制人體做出目標姿勢的技術中,最常見的控制技術是比例微分控制器(Proportional - Derivative controllers)。但是此種控制器需要微調參數,不同動作的參數皆不同。因此本篇論文提出一個速度驅動控制器(velocity-driven),只需要粗略設定一組參數,即可做出各種類型的動畫。
    本篇論文提出的控制器,可以在即時(real-time)運算下,控制模擬的人體跟隨目標動畫。並可以隨時改變地形、給予外力、改變姿勢,或使用者給予的動作限制,皆可立即(real-time)反應在模擬人體上,並保持平衡。

    This paper present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real-time. Our approach utilizes an inverted pendulum model to on-line adjust the desired motion trajectory from the input motion capture data. This on-line adjustment produces physically-plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to follow in dynamics simulation. Rather than using the Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion following control adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically-correct full body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that MOCAP-following with real-time response animation can be achieved easily. Besides, physically-plausible motion style editing and automatic motion transition can also be generated naturally.

    中文摘要 i 英文摘要 ii 目錄 iv 圖目錄 vi 1. 導論 1 1.1 研究動機 1 1.2 研究目的與貢獻 3 1.3 章節介紹及研究方法流程 3 2. 相關研究 6 2.1. 動作捕捉器動畫之應用 6 2.2. 動作合成 7 2.3. 結合動作捕捉器動畫與物理模擬 10 2.4. 物理模擬引擎技術 17 2.5. 倒單擺 19 3. 系統架構 21 3.1. 系統簡介 21 3.2. 系統流程 22 4. 倒單擺模型 24 5. 平衡控制 28 5.1. 從Mocap data中取得動作資訊 28 5.2. 被動反應-擺動腳(swing leg) 29 5.3. 預測質心的路徑 31 5.4. 預測下一步的位置 32 5.5. 二維與三維的結合 33 5.6. 主動反應-支撐腳(Support leg) 34 5.7. 踝關節角度 35 6. 跟隨控制器 37 7. 動作規劃 41 7.1. 轉彎 41 7.2. 站立平衡控制 42 8. 實驗結果 44 8.1. 站立 46 8.2. 跟隨Motion capture data並保持平衡 47 8.3. 產生符合物理的動作與動作切換 49 8.4. 對外界的反應 50 8.5. 改變身體參數 53 9. 結論與未來方向 55 9.1. 結論 55 9.2. 討論與未來方向 55 9.3. 方法限制 56 10. 參考文獻 57

    [1] ABE, Y., DA SILVA, M., AND POPOVI ´C, J. 2007. Multiobjective control with frictional contacts. In SCA 2007, 249–258.
    [2] BARAFF, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In ACM SIGGRAPH 1994, 23–34.
    [3] BARAFF, D. 1996. Linear-time dynamics using lagrange multipliers. In ACM SIGGRAPH 1996, 137–146.
    [4] BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal processing. In Proceedings of ACM SIGGRAPH 95, Annual Conference Series, ACM SIGGRAPH, 97–104.
    [5] COHEN, M. F. 1992. Interactive space-time control for animation. ACM SIGGRAPH 1992, 293–302.
    [6] Cooper S., Hertzmann A., Popovi’c Z. 2007 Active Learning for Real-time Motion Controllers. ACM Transactions on Graphics 26, 3
    [7] DA SILVA, M., ABE, Y., AND POPOVI ´C, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum 27, 2, 371–380.
    [8] DA SILVA, M., ABE, Y., AND POPOVI ´C, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics 27, 3.
    [9] FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. Composable controllers for physics-based character animation. In ACM SIGGRAPH 2001, 251–260.
    [10] FANG, A. C., AND POLLARD, N. S. 2003. Effcient synthesis of physically valid human motion. ACM Trans. Graph. 26, 3,417–426.
    [11] FLASH, T., AND HOGAN, N. 1985. The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience 5, 7, 1688–1703.
    [12] GLEICHER, M. 1998. Retargeting motion to new characters. In Proceedings 0f ACM SIGGRAPH 98, Annual Conference Series, ACM SIGGRAPH, 33–42.
    [13] HARRY, G. 1988. Anthropometry and mass distribution for human analogues v volume i: Military male aviator.
    [14] HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND O’BRIEN, J. F. 1995. Animating human athletics. In ACM SIGGRAPH 1995, 71–78.
    [15] HODGINS, J. K. 1991. Biped gait transitions. Proceedings of the IEEE International Conference on Robotics and Automation.
    [16] KAJITA, S., KANEHIRO, F., KANEKO, K., YOKOI, K., AND HIRUKAWA, H. 2001. The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. IEEE/RSJ International Conference on Intelligent Robots and Systems 1, 239–246.
    [17] KITAMURA, S., KUREMATSU, Y., AND IWATA, M. 1990. Motion generation of a biped locomotive robot using an inverted pendulum model and neural networks. Decision and Control, 1990.,Proceedings of the 29th IEEE Conference on 6, 3308–3312.
    [18] KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. ACM Trans. Graph. 21, 3, 473–482.
    [19] KUO, A. D., DONELAN, J. M., AND RUINA, A. 2005. Energetic consequences of walking like an inverted pendulum: Step-to-step transitions. Exercise and Sport Sciences Reviews 33, 2, 88–97.
    [20] KUO, A. D. 1999. Stabilization of lateral motion in passive dynamic walking. International Journal of Robotics Research 18,9, 917–930.
    [21] LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND POLLARD, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21, 3, 491–500.
    [22] LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of ACM SIGGRAPH 99, Annual Conference Series, ACM SIGGRAPH, 39–48.
    [23] LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture: a two-level statistical model for character motion synthesis. vol. 21, 465–472.
    [24] LIU, C. K., HERTZMANN, A., AND POPOVI ´C, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3, 1071–1081.
    [25] Manoonpong, P.; Geng, T.; Kulvicius, T.; Bernd Porr; Woergoetter, F. (2007). Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning. PLoS (Public Library of Science) Computational Biology (PLoS Comput Biol), 3(7), e134. doi:10.1371/journal.pcbi.0030134
    [26] Marcus G. Pandy and Frank C. Anderson. Three-dimensional computer simulation of jumping and walking using the same model. In Proceedings of the VIIth International Symposium on Computer Simulation in Biomechanics, August 1999.
    [27] Marcus G. Pandy, Felix E. Zajac, Eunsup Sim, and William S. Levine. An optimal control model for maximum-height human jumping. Journal of Biomechanics, 23(12):1185–1198, 1990.
    [28] MCCANN, J., AND POLLARD, N. 2007. Responsive characters from motion fragments. ACM Trans. Graph. 26, 3, 6:1–6:7.
    [29] MIURA, H., AND SHIMOYAMA, I. 1984. Dynamic walk of a biped. International Journal of Robotics Research 3, 2, 60–74.
    [30] Murty, Katta G., “Linear Complementarity, Linear and Nonlinear Programming,” available online at http://ioe.engin.umich.edu/people/fac/books/murty/ linear_complementarity_webbook/, 1988
    [31] POPOVI ´C, Z., AND WITKIN, A. 1999. Physically based motion transformation. ACM SIGGRAPH 1999 (Aug.), 11–20.
    [32] PULLEN, K., AND BREGLER, C. 2000. Animating by multi-level sampling. In IEEE Computer Animation Conference, CGS and IEEE, 36–42.
    [33] RAIBERT, M. H., AND HODGINS, J. K. 1991. Animation of dynamic legged locomotion. SIGGRAPH 1991, 349–358.
    [34] RAIBERT, M. H. 1996. Legged Robots that Balance. MIT Press.
    [35] ROSE, C., COHEN, M., AND BODENHEIMER, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Application 18, 5, 32–40.
    [36] R. Featherstone. Robot Dynamics Algorithms. Kluwer, 1987.
    [37] SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23,3, 514–521.
    [38] SOK, K. W., KIM, M., AND LEE, J. 2007. Simulating biped behaviors from human motion data. In ACM SIGGRAPH’07, 107.
    [39] SRINIVASAN, M., AND RUINA, A. 2006. Computer optimization of a minimal biped model discovers walking and running. Nature 439, 7072 (Jan), 72–75.
    [40] SULEJMANPA ˇSI ´C, A., AND POPOVI ´C, J. 2005. Adaptation of performed ballistic motion. ACM Trans. Graph. 24, 1, 165–179.
    [41] TREUILLE, A., LEE, Y., AND POPOVI ´C, Z. 2007. Near-optimal character animation with continuous control. ACM Trans. Graph. 26, 3, 7:1–7:7.
    [42] WILEY, D., AND HAHN, J. 1997. Interpolation synthesis of articulated figure motion. IEEE Computer Graphics and Application 17, 6, 39–45.
    [43] WITKIN, A., AND KASS, M. 1988. Space-time constraints. ACM SIGGRAPH 1988, 159–168.
    [44] WITKIN, A., AND POPOVI ´C, Z. 1995. Motion warping. In Proceedings of ACM SIGGRAPH 95, Annual Conference Series, ACM SIGGRAPH, 105–108.
    [45] YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbicon: simple biped locomotion control. In ACM SIGGRAPH’07, 105.
    [46] ZORDAN, V. B., AND HODGINS, J. K. 2002. Motion capture-driven simulations that hit and react. In SCA 2002, 89–96.

    下載圖示 校內:2010-08-29公開
    校外:2010-08-29公開
    QR CODE