簡易檢索 / 詳目顯示

研究生: 薛成鳳
Xue, Cheng-Feng
論文名稱: 利用磷酸吡哆醛輔因子工程增強基改大腸桿菌生產高值化學品
Cofactor engineering of pyridoxal 5’-phosphate (PLP) toward high-value chemicals production in genetic Escherichia coli
指導教授: 吳意珣
Ng, I-Son
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 183
中文關鍵詞: 磷酸吡哆醛輔因子工程賴氨酸脫羧酶屍胺5-氨基酮戊酸4-氨基丁酸重組大腸桿菌小球藻二氧化碳冷處理篩選平台
外文關鍵詞: pyridoxal 5’-phosphate, cofactor engineering, lysine decarboxylase, cadaverine, 5-aminolevulinic acid, 4-aminobutyric acid, recombinant Escherichia colI, Chlorella sorokiniana, carbon dioxide, cold treatment, screening platform
相關次數: 點閱:104下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著生物技術的進步和各種基因編輯工具的發展,利用微生物細胞工廠生產化學品取代傳統化學合成的方法廣受關注。生物製程技術不僅有助於減少環境污染,也有助於實現二氧化碳淨零排放。然而,生物製造三個關鍵性能指標:產量、產率和轉化率仍不能滿足工業級放大生產。
    輔因子工程被認為是代謝工程的關鍵策略之一。輔因子在多種生物反應中發揮作用,例如影響氧化還原平衡、細胞代謝及促進催化過程。磷酸吡哆醛 (pyridoxal 5’-phosphate, PLP) 是一種多功能性輔因子,已知參與230多種酶反應。然而,當細胞內累積過量的PLP造成氨基酸代謝失衡且抑制細胞生長。因此,構建高通量平台篩選PLP生產的最佳組合達到最優化反應速率與細胞生長的平衡是其中關鍵。
    首先,過表達吡哆醛激酶(PdxY 或 PdxK)和吡哆醇/吡哆胺 5'-磷酸氧化酶(PdxH)以生產PLP自足型生物催化劑,發現大腸桿菌BL21以J23100啟動子驅動pdxY時,PLP積累量達到峰值。將PLP自足型生物催化劑應用於體內和體外戊二胺生產,耦合冷激處理的細胞達到121 g/L/h屍胺產率。本研究證明了PLP超級救援途徑中基因可用於細胞內再生PLP且生產高值化學品。另一方面,吡哆醛激酶PdxY整合的大腸桿菌菌株,有利更多碳流入三羧酸循環,同時減少乙酸等副產物,配合優化前體濃度和補料醱酵策略,取得8.21 g/L 的5-氨基乙酰丙酸 (5-ALA) 之光動力癌症藥物。
    基質和產物的質傳速率是全細胞觸媒催化效率的關鍵問題。目前使用化學品或表面活性劑處理細胞增加細胞膜通透性,會增加下游純化的難度。因此,本研究通過冷激處理細胞增強細胞通透性用於4-氨基丁酸(GABA)生產。結果在-20℃冷激處理的細胞中,88.6%的谷氨酸脫羧酶(GadB)在催化過程中遷移到細胞間質,酶轉化率增加了2倍,最終經由十次重覆使用全細胞催化,獲得累積產物850 g/L的GABA。但因1 mole GABA生產將排放1 mole二氧化碳,在本研究將反應釋放的二氧化碳排入氫氧化鈉形成碳酸氫鈉,進一步用於培養小球藻Chlorella sorokiniana (CS)及Chlorella vulgaris (CV)。再以自備的GABA加入微藻培養體系中,分別提升生物量和脂質含量1.65倍和1.43倍。
    最後,本論文建立了篩選平台Direct Enzymatic Evaluation Platform (DEEP),在CRISPRi介導pdxB基因下調的菌株中,篩選啟動子、基因與PLP生成前體的最適化組合,用於微調細胞內磷酸吡哆醛生產。結果取得PLP最佳模組菌株WJK,不僅可以增強PLP依賴型蛋白產量及活性,如谷氨酸脫羧酶,精氨酸脫羧酶、賴氨酸脫羧酶、5-ALA合成酶等。同時證明了PLP結合點在Ser-His-Lys,是PLP提高蛋白質表達水準的關鍵。
    本文完成磷酸吡哆醛輔因子工程用於生產高值化學品,未來可用於加速PLP依賴性蛋白質定向進化。輔因子工程與體外化學生產相結合的技術,是永續工業生物製程可實現二氧化碳淨零排放的新契機。

    In recent years, with the advance of biotechnology and a variety of genetic editing tools, scientists have devoted themselves to constructing microbial cell factories and producing chemicals instead of chemical synthesis towards reducing environmental pollution and achieving net-zero carbon dioxide emission. However, the three critical parameters of bioprocess, including titer, productivity rate, and yield, are crucial to satisfying the industrial scale requirements.
    Cofactor engineering has been identified as a crucial strategy in metabolic engineering involving abundant biological reactions, especially for influencing redox balance, cellular metabolism, and even promoting the biocatalytic process. Pyridoxal 5’-phosphate (PLP) participates in more than 230 enzymatic reactions as a versatile cofactor. However, the high level of intracellular PLP could inhibit cell growth due to the imbalance of amino acid metabolism. Therefore, a high throughput screening platform to explore the best combination of genetic elements for PLP production is urgent and a concern.
    At first, a PLP self-sufficient biocatalyst by expressing the pyridoxal kinase (PdxY or PdxK) and pyridoxine/pyridoxamine 5'-phosphate oxidase (PdxH) is developed. E. coli BL21 harboring pdxY under the J23100 promoter produced the highest level of PLP. Thus, the best cadaverine productivity of 121 g/L/h using PLP self-sufficient biocatalyst was achieved in the permeabilized cells by cold treatment. The results also proved the function of genes in the PLP super-salvage synthesis pathway was highly efficient for PLP regeneration for high-end chemicals production. On the other hand, a pyridoxal kinase PdxY-integrated E. coli strain could drive more carbon flux into the TCA cycle and diminish the byproduct of acetate. Finally, fermentation with optimized precursor and feeding strategies achieved 8.21 g/L of 5-ALA, a photodynamic therapy cancer drug.
    The mass transfer rate of substrate and product is the critical problem of whole-cell bioconversion. Previous reports showed that chemicals or surfactants treated on cell has successfully increased cell membrane permeability but introduced the difficulty of downstream purification. Herein, we developed an efficient physical method to enhance cell permeability by cold treatment on whole-cell for 4-aminobutyric acid (GABA) production. It was observed that 88.6% of GadB in the -20oC-treated cells migrated to the periplasm after the biotransformation. Kinetic studies showed that the enzymatic turnover rate of whole cell biocatalysts increased 2-fold after cold treatment. The accumulative 850 g/L of GABA was obtained from a 10-times recycling biocatalyst as one mole of CO2 would be released along with GABA formation. We captured the CO2 by sodium hydroxide and further used it to cultivate microalgae of Chlorella sorokiniana (CS) and Chlorella vulgaris (CV). Meanwhile, the in vitro GABA was fed into the CS cultivation to stimulate biomass and lipid production of 1.65-fold and 1.43-fold, respectively.
    Finally, we established a Direct Enzymatic Evaluation Platform (DEEP) to fine-tune pyridoxal 5’-phosphate-dependent proteins' performance using CRISPRi mediated on pdxB. The relevance of decoy PLP-binding proteins with a PLP amplifier for fine-tuning the quantity and quality of diverse enzymes was demonstrated. This platform could enhance the enzymatic activities of 5-aminolevulinic acid synthase, glutamate decarboxylase, lysine decarboxylase, and arginine decarboxylase by approximately two-fold. Finally, we identified the conserved PLP-binding pocket, Ser-His-Lys, which was critical in PLP sponge strain for enhanced protein expression levels.
    In conclusion, cofactor engineering of PLP is not limited to accelerating high-level chemical production but also assisting the evolution of PLP-dependent proteins. By coupling cofactor engineering and in vitro chemical production, a new opportunity is afforded to achieve net-zero carbon emissions toward a sustainable industry.

    Memorandum On Copyright Claim Or Disclaimer I 摘要 II Abstract IV 致謝 VI Contents VII Lists Of Figures XII List Of Abbreviations XV Chapter 1 Introduction 1 1.1 Motivation and purpose 1 1.2 Research scope in the dissertation 2 Chapter 2 Literature Review 6 2.1 From the petrochemical industry to the biological process 6 2.1.1 Environmental concerns and energy problem 6 2.1.2 Petrochemical production 6 2.1.3 Beyond petrochemicals: biotechnology for chemicals production 8 2.2 System biology engineering approaches 9 2.2.1. Synthetic biology 11 2.2.2. Systems biology 15 2.2.3. Metabolic engineering 16 2.2.4. Evolutionary engineering 18 2.3 E. coli as a sustainable platform for chemicals production 19 2.3.1 Biorefinery 19 2.3.2 Biofuels 21 2.3.3 Bulk chemicals 25 2.3.4 The limitation of industrial chemicals production in E. coli 26 2.4 Cofactor engineering of pyridoxal 5’-phosphate (PLP) 27 2.4.1 PLP is a versatile cofactor in biological process 27 2.4.2 PLP synthesis pathway in E. coli 29 2.4.3 The challenge for high-level cofactor regeneration 32 2.5 High-end chemicals production depends on PLP regeneration 32 2.5.1 Cadaverine 32 2.5.2 4-aminobutyric acid (GABA) 33 2.5.3 5-aminoluvlinic acid (5-ALA) 34 2.6 Enhancement of mass transfer rate for chemicals production 34 2.6.1 Chemical treatment methods 34 2.6.2 Physical treatment methods 35 2.6.3 Improvement of product secretion by expressing an antiporter 36 Chapter 3 Materials And Methods 37 3.1 Chemicals and materials 37 3.2 Instruments 41 3.3 The strains, plasmids and primers used in this thesis. 42 3.4 Molecular cloning and genetic strain development 47 3.4.1 Plasmid DNA extraction 47 3.4.2 Polymerase Chain Reaction (PCR) 47 3.4.3 Primer phosphorylation and annealing 50 3.4.4 Restriction enzyme digestion 50 3.4.5 Gel extraction and PCR purification 51 3.4.6 Ligation 51 3.4.7 Heat-shock competent cell preparation 51 3.4.8 Heat-shock transformation 52 3.4.9 Gene integration method 52 3.4.9.1 Gene integration by phage attachment site 52 3.4.9.2 Gene integration by one-step phage attachment 52 3.4.9.3 Resistance removal by FLP recombinase 53 3.5 Cell culture and conditions 53 3.5.1 Medium used in this study 53 3.5.2 Cell culture condition 53 3.6 Protein analysis 53 3.6.1 Buffer preparation 53 3.6.2 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) preparation 54 3.6.3 Sample preparation 54 3.6.4 SDS-PAGE running program, staining and de-staining method 55 3.6.5 Quantifying the relative protein concentration on PAGE 55 3.6.6 Identify the protein identity by tandem mass spectrometer 55 3.7 Characterization techniques 55 3.7.1 Scanning Electron Microscopy (SEM) analysis 55 3.7.2 Determination of plasmid copy number by quantitative PCR (qPCR) 56 3.7.3 Determination of biomass 57 3.8 High-performance liquid chromatography (HPLC) analysis 57 3.8.1 Determination of amino acid, cadaverine, putrescine and GABA 57 3.8.2 Determination of intracellular PLP 57 3.8.3 Determination of metabolism 58 Chapter 4 Efficient Biotransformation Of L-Lysine Into Cadaverine By Strengthening Pyridoxal 5’-Phosphate-Dependent Proteins In Escherichia Coli With Cold Shock Treatment 59 4.1 Background 59 4.2 Material and methods 61 4.2.1 Plasmids construction 61 4.2.2 Culture condition 61 4.2.3 In vivo whole-cell biotransformation of L-lysine to cadaverine 61 4.2.4 In vitro whole-cell biotransformation of L-lysine to cadaverine 62 4.3 Results and discussion 62 4.3.1 Effect of super-salvage pathway genes on cell growth 62 4.3.2 Proteins expression and intracellular PLP production 64 4.3.3 Enhancement of in vivo cadaverine production by intracellular PLP 66 4.3.4 Enhancement of cadaverine production by whole-cell biotransformation..68 4.4 Conclusion 72 Chapter 5 Engineering Pyridoxal Kinase PdxY Integrative Escherichia Coli Strain And Stepwise Optimization For High-Level 5-Aminolevulinic Acid Production 73 5.1 Introduction 73 5.2 Materials and methods 75 5.2.1 Bacterial strains, plasmids, and materials 75 5.2.2 Genome integration with pdxY and pdxK genes 75 5.2.3 Culture medium and condition 75 5.2.4 Ehrlich’s reagent assay 76 5.2.5 ALAS activity analysis 76 5.3 Results and discussion 76 5.3.1 PLP formation, biomass and amino acids profiles between engineered strains…………………………………………………………………………....76 5.3.2 Effect of PdxY on biomass, ALA production and metabolites 79 5.3.3 Reinforcing ALA production with chaperone and high copy plasmid 81 5.3.4 Optimization of substrate and precursor for ALA production 84 5.3.5 High-level ALA production in fed-batch fermentation 85 5.4 Conclusion 88 Chapter 6 Migration Of Glutamate Decarboxylase By Cold Treatment On Whole-Cell Biocatalyst Triggered Activity For 4-Aminobutyric Acid Production In Engineering Escherichia Coli 89 6.1 Introduction 89 6.2 Materials and methods 90 6.2.1 Culture conditions 90 6.2.2 Conversion of MSG into GABA 90 6.2.3 Cold-treatment of whole-cell biocatalyst 91 6.2.4 Determination of whole-cell enzyme kinetic and thermodynamic parameters 91 6.2.5 Zeta potential measurement 91 6.2.6 Protein extraction from periplasm 91 6.2.7 Reusability of whole-cell biocatalysts 92 6.3 Results and discussion 92 6.3.1 Effect of replication origin and oxygen supply on GadB expression 92 6.3.2 Kinetic parameters of GadB in different cold treatments 94 6.3.3 Morphology, charge, and mechanism of cold-treated whole-cell biocatalyst 97 6.3.4 Reutilization of whole-cell biocatalyst for high-level GABA production101 6.4 Conclusion 102 Chapter 7 Sustainable Production Of 4-Aminobutyric Acid (GABA) And Cultivation Of Chlorella Sorokiniana And Chlorella Vulgaris As Circular Economy 103 7.1 Background 103 7.2 Materials and methods 105 7.2.1 Cultivation and cell growth in different mediums 105 7.2.2 Conversion of MSG to GABA using different strains 105 7.2.3 Optimal biotransformation of GABA 105 7.2.4 Optimization of whole-cell conversion using in situ CO2 105 7.2.5 Citrate addition for high-level conversion of GABA 106 7.2.6 CO2 sequestration and microalgae cultivation 106 7.2.7 Lipid analysis 107 7.3 Results and discussion 107 7.3.1 Optimization of GAD production in different strains 107 7.3.2 Optimization of GABA production in W3110 109 7.3.3 In-situ CO2 utilization for higher GABA production 112 7.3.4 Enhancement of GABA production via PLP regeneration 113 7.3.5 Citrate-fed strategy for high-level GABA production 114 7.3.6 Using CO2 by-product and GABA to enhance microalgae growth 118 7.4 Conclusion 120 Chapter 8 A Novel Direct Enzymatic Evaluation Platform (DEEP) To Fine-Tune The Quality And Quantity Of Pyridoxal-5’-Phosphate-Dependent Proteins 122 8.1 Background 122 8.2 Experimental section 123 8.2.1 Bacterial strains, plasmid, and materials 123 8.2.2 Cultivation condition and medium for DEEP 123 8.2.3 Culture condition for elucidating the strain dependence on nitrogen/carbon source 124 8.2.4 Culture conditions for PLP-dependent proteins 124 8.2.5 Enzymatic activity analysis 124 8.2.6 Analysis of PLP binding site and 3-D structure 125 8.2.7 Molecular dynamics simulation of RcALAS mutant 125 8.3 Results and discussion 125 8.3.1 The correlation between nitrogen utilization and PLP dependency 125 8.3.2 Identification of the essential genes in PLP synthesis pathways 128 8.3.3 Using CRISPRi to screen sensitive E. coli strains to PLP availability 129 8.3.4 A novel Direct Enzymatic Evaluation Platform (DEEP) 130 8.3.5 Explore the best chassis and enzymatic activity via DEEP 134 8.3.6 Design of a PLP sponge to enhance protein quality and quantity (Q&Q) 137 8.3.7 A conserved PLP binding pocket is critical in PLP sponge strains 139 8.4 Conclusion 140 Chapter 9 Future Prospects 142 9.1 Establishment of a whole cell biosensor for PLP detection is required 142 9.2 Explore the optimal assemblies for in vivo PLP production 142 9.3 Apply the DEEP into other strains 142 9.4 Apply the superior host WJK for high-end chemicals production 143 References 144 Appendix 172

    1. Aamer Mehmood, M., Shahid, A., Malik, S., Wang, N., Rizwan Javed, M., Nabeel Haider, M., Verma, P., Umer Farooq Ashraf, M., Habib, N., Syafiuddin, A., & Boopathy, R. Advances in developing metabolically engineered microbial platforms to produce fourth-generation biofuels and high-value biochemicals. Bioresour Technol, 337, 125510, 2021. https://doi.org/10.1016/j.biortech.2021.125510
    2. Akhtar, M. K., & Jones, P. R. Cofactor engineering for enhancing the flux of metabolic pathways. Front Bioeng Biotechnol, 2, 30, 2021. https://doi.org/10.3389/fbioe.2014.00030
    3. Atkinson, J. T., Campbell, I. J., Thomas, E. E., Bonitatibus, S. C., Elliott, S. J., Bennett, G. N., & Silberg, J. J. Metalloprotein switches that display chemical-dependent electron transfer in cells. Nat Chem Biol, 15(2), 189-195, 2019. https://doi.org/10.1038/s41589-018-0192-3
    4. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., & Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2, 2006.0008, 2006. https://doi.org/10.1038/msb4100050
    5. Bailey, J. E. Toward a science of metabolic engineering. Science, 252(5013), 1668-1675, 1991. https://doi.org/10.1126/science.2047876
    6. Baritugo, K. A., Kim, H. T., David, Y., Khang, T. U., Hyun, S. M., Kang, K. H., Yu, J. H., Choi, J. H., Song, J. J., Joo, J. C., & Park, S. J. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microb Cell Fact, 17(1), 129, 2018. https://doi.org/10.1186/s12934-018-0977-9
    7. Burk, M. J., & Van Dien, S. Biotechnology for Chemical Production: Challenges and Opportunities. Trends Biotechnol, 34(3), 187-190, 2016. https://doi.org/10.1016/j.tibtech.2015.10.007
    8. Cai, K., Schirch, D., & Schirch, V. The affinity of pyridoxal 5'-phosphate for folding intermediates of Escherichia coli serine hydroxymethyltransferase. J Biol Chem, 270(33), 19294-19299, 1995. https://doi.org/10.1074/jbc.270.33.19294
    9. Cai, M., Zhao, Z., Li, X., Xu, Y., Xu, M., & Rao, Z. Development of a nonauxotrophic L-homoserine hyperproducer in Escherichia coli by systems metabolic engineering. Metab Eng, 73, 270-279, 2022. https://doi.org/10.1016/j.ymben.2022.08.003
    10. Campbell, A. M. Chromosomal insertion sites for phages and plasmids. J Bacteriol, 174(23), 7495-7499, 1992. https://doi.org/10.1128/jb.174.23.7495-7499.1992
    11. Capitani, G., De Biase, D., Aurizi, C., Gut, H., Bossa, F., & Grütter, M. G. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. Embo j, 22(16), 4027-4037, 2003. https://doi.org/10.1093/emboj/cdg403
    12. Cataldo, P. G., Villegas, J. M., Savoy de Giori, G., Saavedra, L., & Hebert, E. M. Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation. Int J Food Microbiol, 333, 108792, 2020. https://doi.org/10.1016/j.ijfoodmicro.2020.108792
    13. Chen, Y. W., Xu, D. B., Fan, L. H., Zhang, X., & Tan, T. W. Manipulating multi-system of NADPH regulation in Escherichia coli for enhanced S-adenosylmethionine production. Rsc Advances, 5(51), 41103-41111, 2015. https://doi.org/10.1039/c5ra02937f
    14. Cheng, A. A., & Lu, T. K. Synthetic biology: an emerging engineering discipline. Annu Rev Biomed Eng, 14, 155-178, 2012. https://doi.org/10.1146/annurev-bioeng-071811-150118
    15. Cheng, S. Y., Lin, T. H., & Chen, P. T. Integration of Multiple Phage Attachment Sites System to Create the Chromosomal T7 System for Protein Production in Escherichia coli Nissle 1917. J Agric Food Chem, 70(33), 10239-10247, 2022. https://doi.org/10.1021/acs.jafc.2c04614
    16. Cherubini, F., Jungmeier, G., Wellisch, M., Willke, T., Skiadas, I., Van Ree, R., & de Jong, E. Toward a common classification approach for biorefinery systems. Biofuel Bioprod Biorefin, 3(5), 534-546, 2009. https://doi.org/10.1002/bbb.172
    17. Choi, K. R., Jang, W. D., Yang, D., Cho, J. S., Park, D., & Lee, S. Y. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol, 37(8), 817-837, 2019. https://doi.org/10.1016/j.tibtech.2019.01.003
    18. Conrad, T., Plumbom, I., Alcobendas, M., Vidal, R., & Sauer, S. Maximizing transcription of nucleic acids with efficient T7 promoters. Commun Biol, 3(1), 439, 2020. https://doi.org/10.1038/s42003-020-01167-x
    19. Cui, Y. Y., Ling, C., Zhang, Y. Y., Huang, J., & Liu, J. Z. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Fact, 13, 21, 2014. https://doi.org/10.1186/1475-2859-13-21
    20. De Luna, P., Hahn, C., Higgins, D., Jaffer, S. A., Jaramillo, T. F., & Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science, 364(6438), 2019. https://doi.org/10.1126/science.aav3506
    21. Dhakal, R., Bajpai, V. K., & Baek, K. H. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review. Braz J Microbiol, 43(4), 1230-1241, 2012. https://doi.org/10.1590/s1517-83822012000400001
    22. di Salvo, M. L., Contestabile, R., & Safo, M. K. Vitamin B(6) salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta, 1814(11), 1597-1608, 2011. https://doi.org/10.1016/j.bbapap.2010.12.006
    23. di Salvo, M. L., Nogués, I., Parroni, A., Tramonti, A., Milano, T., Pascarella, S., & Contestabile, R. On the mechanism of Escherichia coli pyridoxal kinase inhibition by pyridoxal and pyridoxal 5'-phosphate. Biochim Biophys Acta, 1854(9), 1160-1166, 2015. https://doi.org/10.1016/j.bbapap.2015.01.013
    24. Dien, B. S., Nichols, N. N., O'Bryan, P. J., & Bothast, R. J. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol, 84-86, 181-196, 2000.
    25. Ding, W., Cui, J., Zhao, Y., Han, B., Li, T., Zhao, P., Xu, J. W., & Yu, X. Enhancing Haematococcus pluvialis biomass and γ-aminobutyric acid accumulation by two-step cultivation and salt supplementation. Bioresour Technol, 285, 121334, 2019. https://doi.org/10.1016/j.biortech.2019.121334
    26. Ding, Y., Li, X., Horsman, G. P., Li, P., Wang, M., Li, J., Zhang, Z., Liu, W., Wu, B., Tao, Y., & Chen, Y. Construction of an Alternative NAD(+) De Novo Biosynthesis Pathway. Adv Sci, 8(9), 2004632, 2021. https://doi.org/10.1002/advs.202004632
    27. Du, Y. L., & Ryan, K. S. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep, 36(3), 430-457, 2019. https://doi.org/10.1039/c8np00049b
    28. Effendi, S. S. W., Chiu, C. Y., Chang, Y. K., & Ng, I. S. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. Int J Biol Macromol, 152, 930-938, 2020. https://doi.org/10.1016/j.ijbiomac.2019.11.234
    29. Fan, L. Q., Li, M. W., Qiu, Y. J., Chen, Q. M., Jiang, S. J., Shang, Y. J., & Zhao, L. M. Increasing thermal stability of glutamate decarboxylase from Escherichia coli by site-directed saturation mutagenesis and its application in GABA production. J Biotechnol, 278, 1-9, 2018. https://doi.org/10.1016/j.jbiotec.2018.04.009
    30. Fang, L., Fan, J., Luo, S., Chen, Y., Wang, C., Cao, Y., & Song, H. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nat Commun, 12(1), 4976, 2021. https://doi.org/10.1038/s41467-021-25243-w
    31. Feng, L., Zhang, Y., Fu, J., Mao, Y., Chen, T., Zhao, X., & Wang, Z. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng, 113(6), 1284-1293, 2016. https://doi.org/10.1002/bit.25886
    32. Fitzpatrick, T. B., Amrhein, N., Kappes, B., Macheroux, P., Tews, I., & Raschle, T. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J, 407(1), 1-13, 2007. https://doi.org/10.1042/bj20070765
    33. Fleischman, N. M., Das, D., Kumar, A., Xu, Q., Chiu, H. J., Jaroszewski, L., Knuth, M. W., Klock, H. E., Miller, M. D., Elsliger, M. A., Godzik, A., Lesley, S. A., Deacon, A. M., Wilson, I. A., & Toney, M. D. Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome. Protein Sci, 23(8), 1060-1076, 2014. https://doi.org/10.1002/pro.2493
    34. Gao, Q., Duan, Q., Wang, D., Zhang, Y., & Zheng, C. Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies. J Agric Food Chem, 61(8), 1914-1919, 2013. https://doi.org/10.1021/jf304749v
    35. Ghatge, M. S., Contestabile, R., di Salvo, M. L., Desai, J. V., Gandhi, A. K., Camara, C. M., Florio, R., González, I. N., Parroni, A., Schirch, V., & Safo, M. K. Pyridoxal 5'-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase. Plos One, 7(7), e41680, 2012. https://doi.org/10.1371/journal.pone.0041680
    36. Ghatge, M. S., Karve, S. S., David, T. M., Ahmed, M. H., Musayev, F. N., Cunningham, K., Schirch, V., & Safo, M. K. Inactive mutants of human pyridoxine 5'-phosphate oxidase: a possible role for a noncatalytic pyridoxal 5'-phosphate tight binding site. FEBS Open Bio, 6(5), 398-408, 2016. https://doi.org/10.1002/2211-5463.12042
    37. Glazyrina, J., Materne, E. M., Dreher, T., Storm, D., Junne, S., Adams, T., Greller, G., & Neubauer, P. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Fact, 9, 42, 2010. https://doi.org/10.1186/1475-2859-9-42
    38. Goeppert, A., Czaun, M., Jones, J. P., Prakash, G. K. S., & Olah, G. A. Recycling of carbon dioxide to methanol and derived products–closing the loop. . Chem Soc Rev, 43(23), 7995-8048, 2014. https://doi.org/10.1039/c4cs00122b
    39. Gupta, S. K., & Shukla, P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol, 36(6), 1089-1098, 2016. https://doi.org/10.3109/07388551.2015.1084264
    40. Ham, S., Bhatia, S. K., Gurav, R., Choi, Y. K., Jeon, J. M., Yoon, J. J., Choi, K. Y., Ahn, J., Kim, H. T., & Yang, Y. H. Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system. Enzyme Microb Technol, 155, 109994, 2022. https://doi.org/10.1016/j.enzmictec.2022.109994
    41. Hara, K. Y., Saito, M., Kato, H., Morikawa, K., Kikukawa, H., Nomura, H., Fujimoto, T., Hirono-Hara, Y., Watanabe, S., Kanamaru, K., & Kondo, A. 5-Aminolevulinic acid fermentation using engineered Saccharomyces cerevisiae. Microb Cell Fact, 18(1), 194, 2019. https://doi.org/10.1186/s12934-019-1242-6
    42. Heo, L., Janson, G., & Feig, M. Physics-based protein structure refinement in the era of artificial intelligence. Proteins, 89(12), 1870-1887, 2021. https://doi.org/10.1002/prot.26161
    43. Hernández-Montalvo, V., Martínez, A., Hernández-Chavez, G., Bolivar, F., Valle, F., & Gosset, G. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng, 83(6), 687-694, 2003. https://doi.org/10.1002/bit.10702
    44. Huang, C. Y., Ting, W. W., Chen, Y. C., Wu, P. Y., Dong, C. D., Huang, S. F., Lin, H. Y., Li, S. F., Ng, I. S., & Chang, J. S. Facilitating the enzymatic conversion of lysine to cadaverine in engineered Escherichia coli with metabolic regulation by genes deletion. Biochem Eng J, 165, 107797, 2021. https://doi.org/10.1016/j.bej.2020.107797
    45. Huang, J. F., Liu, Z. Q., Jin, L. Q., Tang, X. L., Shen, Z. Y., Yin, H. H., & Zheng, Y. G. Metabolic engineering of Escherichia coli for microbial production of L-methionine. Biotechnol Bioeng, 114(4), 843-851, 2017. https://doi.org/10.1002/bit.26198
    46. Huang, Y., Liu, X., Cui, Z., Wiegmann, D., Niro, G., Ducho, C., Song, Y., Yang, Z., & Van Lanen, S. G. Pyridoxal-5'-phosphate as an oxygenase cofactor: Discovery of a carboxamide-forming, α-amino acid monooxygenase-decarboxylase. Proc Natl Acad Sci U S A, 115(5), 974-979, 2018. https://doi.org/10.1073/pnas.1718667115
    47. Huang, Y. H., Ji, X. L., Ma, Z. L., Lezyk, M., Xue, Y. J., & Zhao, H. Green chemical and biological synthesis of cadaverine: recent development and challenges. Rsc Advances, 11(39), 23922-23942, 2021. https://doi.org/10.1039/d1ra02764f
    48. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., & Preston, J. F. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol, 53(10), 2420-2425, 1987. https://doi.org/10.1128/aem.53.10.2420-2425.1987
    49. Inoue, K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol, 24(2), 97-101, 2017. https://doi.org/10.1111/iju.13291
    50. Ito, T., & Downs, D. M. Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli. J Bacteriol, 202(12), 2020. https://doi.org/10.1128/jb.00056-20
    51. Iyyappan, J., Jayamuthunagai, J., Bharathiraja, B., Saravanaraj, A., Praveen Kumar, R., & Balraj, S. Production of biodiesel from Caulerpa racemosa oil using recombinant Pichia pastoris whole cell biocatalyst with double displayed over expression of Candida antartica lipase. Bioresour Technol, 363, 127893, 2020. https://doi.org/10.1016/j.biortech.2022.127893
    52. Jawed, K., Abdelaal, A. S., Koffas, M. A. G., & Yazdani, S. S. Improved Butanol Production Using FASII Pathway in E. coli. ACS Synth Biol, 9(9), 2390-2398, 2020. https://doi.org/10.1021/acssynbio.0c00154
    53. Jun, Y. W., Hebenbrock, M., & Kool, E. T. A fluorescent hydrazone exchange probe of pyridoxal phosphate for the assessment of vitamin B6 status. Chem Commun, 56(2), 317-320, 2019. https://doi.org/10.1039/c9cc08458d
    54. Kanda, T., Abiko, G., Kanesaki, Y., Yoshikawa, H., Iwai, N., & Wachi, M. RNase E-dependent degradation of tnaA mRNA encoding tryptophanase is prerequisite for the induction of acid resistance in Escherichia coli. Sci Rep, 10(1), 7128, 2020. https://doi.org/10.1038/s41598-020-63981-x
    55. Kang, D. G., Kim, Y. K., & Cha, H. J. Comparison of green fluorescent protein expression in two industrial Escherichia coli strains, BL21 and W3110, under co-expression of bacterial hemoglobin. Appl Microbiol Biotechnol, 59(4-5), 523-528, 2002. https://doi.org/10.1007/s00253-002-1043-3
    56. Kang, Z., Wang, Y., Gu, P., Wang, Q., & Qi, Q. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng, 13(5), 492-498, 2011. https://doi.org/10.1016/j.ymben.2011.05.003
    57. Kawaguchi, H., Hasunuma, T., Ogino, C., & Kondo, A. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol, 42, 30-39, 2016. https://doi.org/10.1016/j.copbio.2016.02.031
    58. Keasling, J. Synthetic biology for synthetic chemistry. N Biotechnol, 31, S9-S9, 2014. https://doi.org/10.1016/j.nbt.2014.05.1633
    59. Kildegaard, K. R., Hallström, B. M., Blicher, T. H., Sonnenschein, N., Jensen, N. B., Sherstyk, S., Harrison, S. J., Maury, J., Herrgård, M. J., Juncker, A. S., Forster, J., Nielsen, J., & Borodina, I. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab Eng, 26, 57-66, 2014. https://doi.org/10.1016/j.ymben.2014.09.004
    60. Kim, H. J., Kim, Y. H., Shin, J. H., Bhatia, S. K., Sathiyanarayanan, G., Seo, H. M., Choi, K. Y., Yang, Y. H., & Park, K. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J Microbiol Biotechnol, 25(7), 1108-1113, 2015. https://doi.org/10.4014/jmb.1412.12052
    61. Kim, J., Flood, J. J., Kristofich, M. R., Gidfar, C., Morgenthaler, A. B., Fuhrer, T., Sauer, U., Snyder, D., Cooper, V. S., Ebmeier, C. C., Old, W. M., & Copley, S. D. Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB. Proc Natl Acad Sci U S A, 116(48), 24164-24173, 2019. https://doi.org/10.1073/pnas.1915569116
    62. Kim, J. H., Kim, J., Kim, H. J., Sathiyanarayanan, G., Bhatia, S. K., Song, H. S., Choi, Y. K., Kim, Y. G., Park, K., & Yang, Y. H. Biotransformation of pyridoxal 5 '-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli. Enzyme Microb Technol, 104, 9-15, 2017a. https://doi.org/10.1016/j.enzmictec.2017.05.002
    63. Kim, J. H., Seo, H. M., Sathiyanarayanan, G., Bhatia, S. K., Song, H. S., Kim, J., Jeon, J. M., Yoon, J. J., Kim, Y. G., Park, K., & Yang, Y. H. Development of a continuous L-lysine bioconversion system for cadaverine production. J Ind Eng Chem, 46, 44-48, 2017b. https://doi.org/10.1016/j.jiec.2016.09.038
    64. Kitano, H. Systems biology: a brief overview. Science, 295(5560), 1662-1664, 2002. https://doi.org/10.1126/science.1069492
    65. Ko, Y. S., Kim, J. W., Lee, J. A., Han, T., Kim, G. B., Park, J. E., & Lee, S. Y. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev, 49(14), 4615-4636, 2020. https://doi.org/10.1039/d0cs00155d
    66. Konz, J. O., King, J., & Cooney, C. L. Effects of oxygen on recombinant protein expression. Biotechnol Prog, 14(3), 393-409, 1998. https://doi.org/10.1021/bp980021l
    67. Lai, Y. C., Chang, C. H., Chen, C. Y., Chang, J. S., & Ng, I. S. Towards protein production and application by using Chlorella species as circular economy. Bioresour Technol, 289, 121625, 2019. https://doi.org/10.1016/j.biortech.2019.121625
    68. Lambrecht, G., Braun, K., Damer, M., Ganso, M., Hildebrandt, C., Ullmann, H., Kassack, M. U., & Nickel, P. Structure-activity relationships of suramin and pyridoxal-5'-phosphate derivatives as P2 receptor antagonists. Curr Pharm Des, 8(26), 2371-2399, 2002. https://doi.org/10.2174/1381612023392973
    69. Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc, 8(11), 2180-2196, 2013. https://doi.org/10.1038/nprot.2013.132
    70. Le Vo, T. D., Ko, J. S., Park, S. J., Lee, S. H., & Hong, S. H. Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli. J Ind Microbiol Biotechnol, 40(8), 927-933, 2013. https://doi.org/10.1007/s10295-013-1289-z
    71. Leder, I. G. Interrelated effects of cold shock and osmotic pressure on the permeability of the Escherichia coli membrane to permease accumulated substrates. J Bacteriol, 111(1), 211-219, 1972. https://doi.org/10.1128/jb.111.1.211-219.1972
    72. Lee, T. H., & Maheshri, N. A regulatory role for repeated decoy transcription factor binding sites in target gene expression. Mol Syst Biol, 8, 576, 2012. https://doi.org/10.1038/msb.2012.7
    73. Li, F., Wang, Y., Gong, K., Wang, Q., Liang, Q., & Qi, Q. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol Lett, 350(2), 209-215, 2014a. https://doi.org/10.1111/1574-6968.12322
    74. Li, G. H., Huang, D. X., Wang, L., & Deng, Y. Highly efficient whole-cell biosynthesis of putrescine by recombinant Escherichia coli. Biochem Eng J, 166, 107859, 2021a. https://doi.org/10.1016/j.bej.2020.107859
    75. Li, M., Li, D., Huang, Y., Liu, M., Wang, H., Tang, Q., & Lu, F. Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter. J Ind Microbiol Biotechnol, 41(4), 701-709, 2014b. https://doi.org/10.1007/s10295-014-1409-4
    76. Li, Q., Zhao, Y., Ding, W., Han, B., Geng, S., Ning, D., Ma, T., & Yu, X. Gamma-aminobutyric acid facilitates the simultaneous production of biomass, astaxanthin and lipids in Haematococcus pluvialis under salinity and high-light stress conditions. Bioresour Technol, 320, 124418, 2021b. https://doi.org/10.1016/j.biortech.2020.124418
    77. Li, T., Huo, L., Pulley, C., & Liu, A. Decarboxylation mechanisms in biological system. Bioorg Chem, 43, 2-14, 2012. https://doi.org/10.1016/j.bioorg.2012.03.001
    78. Li, Z., & Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci, 73(2), 377-392, 2016. https://doi.org/10.1007/s00018-015-2070-4
    79. Li, Z., Zhao, Y., Zhou, H., Luo, H. B., & Zhan, C. G. Catalytic Roles of Coenzyme Pyridoxal-5'-phosphate (PLP) in PLP-dependent Enzymes: Reaction Pathway for Methionine-γ-lyase-catalyzed L-methionine Depletion. ACS Catal, 10(3), 2198-2210, 2020. https://doi.org/10.1021/acscatal.9b03907
    80. Lin, B., & Tao, Y. Whole-cell biocatalysts by design. Microb Cell Fact, 16(1), 106, 2017. https://doi.org/10.1186/s12934-017-0724-7
    81. Lin, J., Fu, W., & Cen, P. Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour Technol, 100(7), 2293-2297, 2009. https://doi.org/10.1016/j.biortech.2008.11.008
    82. Lin, J. Y., Xue, C., Tan, S. I., & Ng, I. S. Pyridoxal kinase PdxY mediated carbon dioxide assimilation to enhance the biomass in Chlamydomonas reinhardtii CC-400. Bioresour Technol, 322, 124530, 2021. https://doi.org/10.1016/j.biortech.2020.124530
    83. Lin, P. P., Jaeger, A. J., Wu, T. Y., Xu, S. C., Lee, A. S., Gao, F., Chen, P. W., & Liao, J. C. Construction and evolution of an Escherichia coli strain relying on nonoxidative glycolysis for sugar catabolism. Proc Natl Acad Sci U S A, 115(14), 3538-3546, 2018. https://doi.org/10.1073/pnas.1802191115
    84. Lin, W. R., & Ng, I. S. Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation. Enzyme Microb Technol, 133, 109458, 2020. https://doi.org/10.1016/j.enzmictec.2019.109458
    85. Ling, X., Guo, J., Liu, X., Zhang, X., Wang, N., Lu, Y., & Ng, I. S. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresour Technol, 184, 139-147, 2015. https://doi.org/10.1016/j.biortech.2014.09.130
    86. Liu, S., Zhang, G., Li, X., & Zhang, J. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol, 98(17), 7349-7357, 2014. https://doi.org/10.1007/s00253-014-5925-y
    87. Liu, X., Gupta, S. T. P., Bhimsaria, D., Reed, J. L., Rodríguez-Martínez, J. A., Ansari, A. Z., & Raman, S. De novo design of programmable inducible promoters. Nucleic Acids Res, 47(19), 10452-10463, 2019. https://doi.org/10.1093/nar/gkz772
    88. Liu, Y. X., Zheng, Y. X., Wu, H., Zhang, W., Ren, T. Y., You, S. P., Qi, W., Su, R. X., & He, Z. M. Development of an integrated process for the production of high-purity cadaverine from lysine decarboxylase. J Chem Technol Biotechnol, 95(5), 1542-1549, 2020. https://doi.org/10.1002/jctb.6348
    89. Lou, H., Hu, L., Lu, H., Wei, T., & Chen, Q. Metabolic engineering of microbial cell factories for biosynthesis of flavonoids: A Review. Molecules, 26(15), 2021. https://doi.org/10.3390/molecules26154522
    90. Lou, J. W., Zhu, L., Wu, M. B., Yang, L. R., Lin, J. P., & Cen, P. L. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J Zhejiang Univ Sci B, 15(5), 491-499, 2014. https://doi.org/10.1631/jzus.B1300283
    91. Lu, P., Ma, D., Chen, Y., Guo, Y., Chen, G. Q., Deng, H., & Shi, Y. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res, 23(5), 635-644, 2013. https://doi.org/10.1038/cr.2013.13
    92. Luo, G., Fujino, M., Nakano, S., Hida, A., Tajima, T., & Kato, J. Accelerating itaconic acid production by increasing membrane permeability of whole-cell biocatalyst based on a psychrophilic bacterium Shewanella livingstonensis Ac10. J Biotechnol, 312, 56-62, 2020. https://doi.org/10.1016/j.jbiotec.2020.03.003
    93. Luzi, F., Torre, L., Kenny, J. M., & Puglia, D. Bio- and fossil-based polymeric blends and nanocomposites for packaging: structure⁻property relationship. Materials, 12(3), 2019. https://doi.org/10.3390/ma12030471
    94. Ma, W. C., Cao, W. J., Zhang, B. W., Chen, K. Q., Liu, Q. Z., Li, Y., & Ouyang, P. K. Engineering a pyridoxal 5 '-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Sci Rep, 5(1), 1-10, 2015a. https://doi.org/10.1038/srep15630
    95. Ma, W. C., Cao, W. J., Zhang, H., Chen, K. Q., Li, Y., & Ouyang, P. K. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnol Lett, 37(4), 799-806, 2015b. https://doi.org/10.1007/s10529-014-1753-5
    96. Mans, R., Daran, J. G., & Pronk, J. T. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol, 50, 47-56, 2018. https://doi.org/10.1016/j.copbio.2017.10.011
    97. Mao, Y., Chen, Z., Lu, L., Jin, B., Ma, H., Pan, Y., & Chen, T. Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae. J Biotechnol, 322, 29-32, 2020. https://doi.org/10.1016/j.jbiotec.2020.06.001
    98. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C. J., Lu, S., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., Geer, L. Y., Bryant, S. H. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res, 45(D1), D200-d203, 2017. https://doi.org/10.1093/nar/gkw1129
    99. Martinez, M. B., Flickinger, M. C., & Nelsestuen, G. L. Accurate kinetic modeling of alkaline phosphatase in the Escherichia coli periplasm: implications for enzyme properties and substrate diffusion. Biochemistry, 35(4), 1179-1186, 1996. https://doi.org/10.1021/bi951955a
    100. McCarty, N. S., & Ledesma-Amaro, R. Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends Biotechnol, 37(2), 181-197, 2019. https://doi.org/10.1016/j.tibtech.2018.11.002
    101. Meerasri, J., & Sothornvit, R. Characterization of bioactive film from pectin incorporated with gamma-aminobutyric acid. Int J Biol Macromol, 147, 1285-1293, 2020. https://doi.org/10.1016/j.ijbiomac.2019.10.094
    102. Meng, Q., Zhang, Y., Ma, C., Ma, H., Zhao, X., & Chen, T. Purification and functional characterization of thermostable 5-aminolevulinic acid synthases. Biotechnol Lett, 37(11), 2247-2253, 2015. https://doi.org/10.1007/s10529-015-1903-4
    103. Miscevic, D., Mao, J. Y., Kefale, T., Abedi, D., Moo-Young, M., & Perry Chou, C. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng, 118(1), 30-42, 2021. https://doi.org/10.1002/bit.27547
    104. Momany, C., Ghosh, R., & Hackert, M. L. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Protein Sci, 4(5), 849-854, 1995. https://doi.org/10.1002/pro.5560040504
    105. Montaño López, J., Duran, L., & Avalos, J. L. Physiological limitations and opportunities in microbial metabolic engineering. Nat Rev Microbiol, 20(1), 35-48, 2022. https://doi.org/10.1038/s41579-021-00600-0
    106. Moon, Y. M., Yang, S. Y., Chol, T. R., Jung, H. R., Song, H. S., Han, Y. H., Park, H. Y., Bhatia, S. K., Gurav, R., Park, K., Kim, J. S., & Yang, Y. H. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5 '-phosphate and ATP. Enzyme Microb Technol, 127, 58-64, 2019. https://doi.org/10.1016/j.enzmictec.2019.04.010
    107. Muthuraj, R., Hajee, M., Horrocks, A. R., & Kandola, B. K. Biopolymer blends from hardwood lignin and bio-polyamides: Compatibility and miscibility. Int J Biol Macromol, 132, 439-450, 2019. https://doi.org/10.1016/j.ijbiomac.2019.03.142
    108. Naduthodi, M. I. S., Barbosa, M. J., & van der Oost, J. Progress of CRISPR-Cas based genome editing in photosynthetic microbes. Biotechnol J, 13(9), e1700591, 2018. https://doi.org/10.1002/biot.201700591
    109. Naseri, G., & Koffas, M. A. G. Application of combinatorial optimization strategies in synthetic biology. Nat Commun, 11(1), 2446, 2020. https://doi.org/10.1038/s41467-020-16175-y
    110. Nazir, M. S., Ali, Z. M., Bilal, M., Sohail, H. M., & Iqbal, H. M. N. Environmental impacts and risk factors of renewable energy paradigm-a review. Environ Sci Pollut Res Int, 27(27), 33516-33526, 2020. https://doi.org/10.1007/s11356-020-09751-8
    111. Ng, I. S., Zhang, X., Zhang, Y., & Lu, Y. Molecular cloning and heterologous expression of laccase from Aeromonas hydrophila NIU01 in Escherichia coli with parameters optimization in production. Appl Biochem Biotechnol, 169(7), 2223-2235, 2013. https://doi.org/10.1007/s12010-013-0128-z
    112. Ngo, H. P., Nguyen, D. Q., Park, H., Park, Y. S., Kwak, K., Kim, T., Lee, J. H., Cho, K. S., & Kang, L. W. Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes. BMB Rep, 55(9), 439-446, 2022. http://doi.org/ 10.5483/BMBRep.2022.55.9.090
    113. Noh, M. H., Lim, H. G., Park, S., Seo, S. W., & Jung, G. Y. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metab Eng, 43, 1-8, 2017. https://doi.org/10.1016/j.ymben.2017.07.006
    114. Nonaka, D., Fujiwara, R., Hirata, Y., Tanaka, T., & Kondo, A. Metabolic engineering of 1,2-propanediol production from cellobiose using beta-glucosidase-expressing E. coli. Bioresour Technol, 329, 124858, 2021. https://doi.org/10.1016/j.biortech.2021.124858
    115. Oh, Y. H., Kang, K. H., Kwon, M. J., Choi, J. W., Joo, J. C., Lee, S. H., Yang, Y. H., Song, B. K., Kim, I. K., Yoon, K. H., Park, K., & Park, S. J. Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of L-lysine into cadaverine. J Ind Microbiol Biotechnol, 42(11), 1481-1491, 2015. https://doi.org/10.1007/s10295-015-1678-6
    116. Oka, T. Modulation of gene expression by vitamin B6. Nutr Res Rev, 14(2), 257-266, 2001. https://doi.org/10.1079/nrr200125
    117. Opgenorth, P., Costello, Z., Okada, T., Goyal, G., Chen, Y., Gin, J., Benites, V., de Raad, M., Northen, T. R., Deng, K., Deutsch, S., Baidoo, E. E. K., Petzold, C. J., Hillson, N. J., Garcia Martin, H., & Beller, H. R. Lessons from two design-build-test-learn cycles of dodecanol production in Escherichia coli aided by machine learning. ACS Synth Biol, 8(6), 1337-1351, 2019. https://doi.org/10.1021/acssynbio.9b00020
    118. Osire, T., Yang, T., Xu, M., Zhang, X., Long, M., Ngon, N. K. A., & Rao, Z. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli. Int J Biol Macromol, 169, 8-17, 2021. https://doi.org/10.1016/j.ijbiomac.2020.12.017
    119. Paliy, O., & Gunasekera, T. S. Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Appl Microbiol Biotechnol, 73(5), 1169-1172, 2007. https://doi.org/10.1007/s00253-006-0554-8
    120. Park, J. H., Burns, K., Kinsland, C., & Begley, T. P. Characterization of two kinases involved in thiamine pyrophosphate and pyridoxal phosphate biosynthesis in Bacillus subtilis: 4-amino-5-hydroxymethyl-2methylpyrimidine kinase and pyridoxal kinase. J Bacteriol, 186(5), 1571-1573, 2004. https://doi.org/10.1128/jb.186.5.1571-1573.2004
    121. Park, S. J., Kim, E. Y., Noh, W., Oh, Y. H., Kim, H. Y., Song, B. K., Cho, K. M., Hong, S. H., Lee, S. H., & Jegal, J. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng, 36(7), 885-892, 2013. https://doi.org/10.1007/s00449-012-0821-2
    122. Percudani, R., & Peracchi, A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinform., 10, 273, 2009. https://doi.org/10.1186/1471-2105-10-273
    123. Phue, J. N., Lee, S. J., Trinh, L., & Shiloach, J. Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5alpha). Biotechnol Bioeng, 101(4), 831-836, 2008. https://doi.org/10.1002/bit.21973
    124. Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., & Whitman, R. J. Food production and the energy crisis. Science, 182(4111), 443-449, 1973. https://doi.org/10.1126/science.182.4111.443
    125. Pontrelli, S., Chiu, T. Y., Lan, E. I., Chen, F. Y., Chang, P., & Liao, J. C. Escherichia coli as a host for metabolic engineering. Metab Eng, 50, 16-46, 2018. https://doi.org/10.1016/j.ymben.2018.04.008
    126. Prakash, N., & Arungalai Vendan, S. Biodegradable polymer based ternary blends for removal of trace metals from simulated industrial wastewater. Int J Biol Macromol, 83, 198-208, 2016. https://doi.org/10.1016/j.ijbiomac.2015.09.050
    127. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173-1183, 2013. https://doi.org/10.1016/j.cell.2013.02.022
    128. Qian, Z. G., Xia, X. X., & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng, 104(4), 651-662, 2009. https://doi.org/10.1002/bit.22502
    129. Qian, Z. G., Xia, X. X., & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng, 108(1), 93-103, 2011. https://doi.org/10.1002/bit.22918
    130. Rassam, P., Long, K. R., Kaminska, R., Williams, D. J., Papadakos, G., Baumann, C. G., & Kleanthous, C. Intermembrane crosstalk drives inner-membrane protein organization in Escherichia coli. Nat Commun, 9(1), 1082, 2018. https://doi.org/10.1038/s41467-018-03521-4
    131. Ren, J., Zhou, L., Wang, C., Lin, C., Li, Z., & Zeng, A. P. An unnatural pathway for efficient 5-aminolevulinic acid biosynthesis with glycine from glyoxylate Based on retrobiosynthetic design. ACS Synth Biol, 7(12), 2750-2757, 2018. https://doi.org/10.1021/acssynbio.8b00354
    132. Richts, B., Rosenberg, J., & Commichau, F. M. A survey of pyridoxal 5'-phosphate-dependent proteins in the gram-positive model bacterium Bacillus subtilis. Front Mol Biosci, 6, 32, 2019. https://doi.org/10.3389/fmolb.2019.00032
    133. Rui, J., You, S., Zheng, Y., Wang, C., Gao, Y., Zhang, W., Qi, W., Su, R., & He, Z. High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. Bioresour Technol, 302, 122844, 2020. https://doi.org/10.1016/j.biortech.2020.122844
    134. Saha, B. C., Nichols, N. N., & Cotta, M. A. Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresour Technol, 102(23), 10892-10897, 2011. https://doi.org/10.1016/j.biortech.2011.09.041
    135. Saini, M., Wang, Z. W., Chiang, C. J., & Chao, Y. P. Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol. Biotechnol Biofuels, 10, 173, 2017. https://doi.org/10.1186/s13068-017-0857-2
    136. San León, D., & Nogales, J. Toward merging bottom-up and top-down model-based designing of synthetic microbial communities. Cur Opin Microbiol, 69, 102169, 2022. http://doi.org/ 10.1016/j.mib.2022.102169
    137. Santos-Navarro, F. N., Boada, Y., Vignoni, A., & Pico, J. Gene expression space shapes the bioprocess trade-offs among titer, yield and productivity. Appl Sci-Basel, 11(13), Article 5859, 2021. https://doi.org/10.3390/app11135859
    138. Sarasa, S. B., Mahendran, R., Muthusamy, G., Thankappan, B., Selta, D. R. F., & Angayarkanni, J. A brief review on the non-protein amino acid, Gamma-amino butyric acid (GABA): its production and role in microbes. Curr Microbiol, 77(4), 534-544, 2020. https://doi.org/10.1007/s00284-019-01839-w
    139. Sasaki, K., Watanabe, M., Tanaka, T., & Tanaka, T. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol, 58(1), 23-29, 2002. https://doi.org/10.1007/s00253-001-0858-7
    140. Saxena, V. K., Vedamurthy, G. V., & Singh, R. A novel concept of Pyridoxal 5 '-phosphate permeability in E.coli for modulating the heterologous expression of PLP dependent proteins. Process Biochem, 113, 37-46, 2022. https://doi.org/10.1016/j.procbio.2021.12.016
    141. Schneider, J., & Wendisch, V. F. Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol, 91(1), 17-30, 2011. https://doi.org/10.1007/s00253-011-3252-0
    142. Scott, S. R., & Hasty, J. Quorum Sensing Communication Modules for Microbial Consortia. ACS Synth Biol, 5(9), 969-977, 2016. https://doi.org/10.1021/acssynbio.5b00286
    143. Sellés Vidal, L., Murray, J. W., & Heap, J. T. Versatile selective evolutionary pressure using synthetic defect in universal metabolism. Nat Commun, 12(1), 6859, 2021. https://doi.org/10.1038/s41467-021-27266-9
    144. Shanmugam, S., Ngo, H. H., & Wu, Y. R. Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review. Renew Energ, 149, 1107-1119, 2020. https://doi.org/10.1016/j.renene.2019.10.107
    145. Shemin, D., & Russell, C. S. Sigma-aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J Am Chem Soc, 75(19), 4873-4874, 1953. https://doi.org/10.1021/ja01115a546
    146. Shi, F., Xie, Y., Jiang, J., Wang, N., Li, Y., & Wang, X. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme Microb Technol, 61-62, 35-43, 2014. https://doi.org/10.1016/j.enzmictec.2014.04.012
    147. Soksawatmaekhin, W., Kuraishi, A., Sakata, K., Kashiwagi, K., & Igarashi, K. Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol, 51(5), 1401-1412, 2004. http://doi.org/ 10.1046/j.1365-2958.2003.03913.x
    148. Somasundaram, S., Jeong, J., Kumaravel, A., & Hong, S. H. Whole-cell display of Pyrococcus horikoshii glutamate decarboxylase in Escherichia coli for high-titer extracellular gamma-aminobutyric acid production. J Ind Microbiol Biotechnol, 48(7-8), 2021. https://doi.org/10.1093/jimb/kuab039
    149. St-Pierre, F., Cui, L., Priest, D. G., Endy, D., Dodd, I. B., & Shearwin, K. E. One-step cloning and chromosomal integration of DNA. ACS Synth Biol, 2(9), 537-541, 2013. https://doi.org/10.1021/sb400021j
    150. Stummer, W., Pichlmeier, U., Meinel, T., Wiestler, O. D., Zanella, F., & Reulen, H. J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol, 7(5), 392-401, 2006. https://doi.org/10.1016/s1470-2045(06)70665-9
    151. Su, T., Guo, Q., Zheng, Y., Liang, Q., Wang, Q., & Qi, Q. Fine-tuning of hemB using CRISPRi for increasing 5-aminolevulinic acid production in Escherichia coli. Front Microbiol, 10, 1731, 2019. https://doi.org/10.3389/fmicb.2019.01731
    152. Sugimoto, R., Saito, N., Shimada, T., & Tanaka, K. Identification of YbhA as the pyridoxal 5'-phosphate (PLP) phosphatase in Escherichia coli: Importance of PLP homeostasis on the bacterial growth. J Gen Appl Microbiol, 63(6), 362-368, 2018. https://doi.org/10.2323/jgam.2017.02.008
    153. Tan, S. I., & Ng, I. S. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli. Bioresour Technol, 314, 123785, 2020. https://doi.org/10.1016/j.biortech.2020.123785
    154. Tan, S. I., Yu, P. J., & Ng, I. S. CRISPRi-mediated programming essential gene can as a Direct Enzymatic Performance Evaluation & Determination (DEPEND) system. Biotechnol Bioeng, 117(9), 2842-2851, 2020. https://doi.org/10.1002/bit.27443
    155. Tang, C. D., Li, X., Shi, H. L., Jia, Y. Y., Dong, Z. X., Jiao, Z. J., Wang, L. F., Xu, J. H., Yao, L. G., & Kan, Y. C. Efficient expression of novel glutamate decarboxylases and high level production of γ-aminobutyric acid catalyzed by engineered Escherichia coli. Int J Biol Macromol, 160, 372-379, 2020. https://doi.org/10.1016/j.ijbiomac.2020.05.195
    156. Thakur, S., Chaudhary, J., Singh, P., Alsanie, W. F., Grammatikos, S. A., & Thakur, V. K. Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy. Bioresour Technol, 344(Pt A), 126156, 2022. https://doi.org/10.1016/j.biortech.2021.126156
    157. Thu Ho, N. A., Hou, C. Y., Kim, W. H., & Kang, T. J. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. J Biosci Bioeng, 115(2), 154-158, 2013. https://doi.org/10.1016/j.jbiosc.2012.09.002
    158. Ting, W. W., Huang, C. Y., Wu, P. Y., Huang, S. F., Lin, H. Y., Li, S. F., Chang, J. S., & Ng, I. S. Whole-cell biocatalyst for cadaverine production using stable, constitutive and high expression of lysine decarboxylase in recombinant Escherichia coli W3110. Enzyme Microb Technol, 148, 109811, 2021. https://doi.org/10.1016/j.enzmictec.2021.109811
    159. Tizei, P. A., Csibra, E., Torres, L., & Pinheiro, V. B. Selection platforms for directed evolution in synthetic biology. Biochem Soc Trans, 44(4), 1165-1175, 2016. https://doi.org/10.1042/bst20160076
    160. Tominaga, M., Nozaki, K., Umeno, D., Ishii, J., & Kondo, A. Robust and flexible platform for directed evolution of yeast genetic switches. Nat Commun, 12(1), 1846, 2021. https://doi.org/10.1038/s41467-021-22134-y
    161. Tong, Y., Weber, T., & Lee, S. Y. CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep, 36(9), 1262-1280, 2019. https://doi.org/10.1039/c8np00089a
    162. Tramonti, A., Nardella, C., di Salvo, M. L., Barile, A., D'Alessio, F., de Crécy-Lagard, V., & Contestabile, R. Knowns and Unknowns of Vitamin B(6) Metabolism in Escherichia coli. EcoSal Plus, 9(2), 2021. https://doi.org/10.1128/ecosalplus.ESP-0004-2021
    163. Tseng, I. T., Chen, Y. L., Chen, C. H., Shen, Z. X., Yang, C. H., & Li, S. Y. Exceeding the theoretical fermentation yield in mixotrophic Rubisco-based engineered Escherichia coli. Metab Eng, 47, 445-452, 2018. https://doi.org/10.1016/j.ymben.2018.04.018
    164. Verma, A., Thakur, S., Mamba, G., Prateek, Gupta, R. K., Thakur, P., & Thakur, V. K. Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int J Biol Macromol, 148, 1130-1139, 2020. https://doi.org/10.1016/j.ijbiomac.2020.01.142
    165. Vu, H. N., Ito, T., & Downs, D. M. The role of YggS in vitamin B(6) homeostasis in Salmonella enterica is informed by heterologous expression of yeast SNZ3. J Bacteriol, 202(22), 2020. https://doi.org/10.1128/jb.00383-20
    166. Wahyu Effendi, S. S., Tan, S. I., Ting, W. W., & Ng, I. S. Enhanced recombinant Sulfurihydrogenibium yellowstonense carbonic anhydrase activity and thermostability by chaperone GroELS for carbon dioxide biomineralization. Chemosphere, 271, 128461, 2021. https://doi.org/10.1016/j.chemosphere.2020.128461
    167. Wang, C., Pfleger, B. F., & Kim, S. W. Reassessing Escherichia coli as a cell factory for biofuel production. Curr Opin Biotechnol, 45, 92-103, 2017a. https://doi.org/10.1016/j.copbio.2017.02.010
    168. Wang, M., Chen, B., Fang, Y., & Tan, T. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol Adv, 35(8), 1032-1039, 2017b. https://doi.org/10.1016/j.biotechadv.2017.09.008
    169. Wang, T., Guan, C., Guo, J., Liu, B., Wu, Y., Xie, Z., Zhang, C., & Xing, X. H. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun, 9(1), 2475, 2018. https://doi.org/10.1038/s41467-018-04899-x
    170. Wang, T., Tague, N., Whelan, S. A., & Dunlop, M. J. Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites. Nucleic Acids Res, 49(2), 1163-1172, 2021. https://doi.org/10.1093/nar/gkaa1234
    171. Wang, X., Wang, Q., & Qi, Q. Identification of riboflavin: revealing different metabolic characteristics between Escherichia coli BL21(DE3) and MG1655. FEMS Microbiol Lett, 362(11), 2015. https://doi.org/10.1093/femsle/fnv071
    172. Wang, Y., San, K. Y., & Bennett, G. N. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol, 24(6), 994-999, 2013. https://doi.org/10.1016/j.copbio.2013.03.022
    173. Winkler, J. D., & Kao, K. C. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics, 104(6 Pt A), 406-411, 2014. https://doi.org/10.1016/j.ygeno.2014.09.006
    174. Woolston, B. M., Emerson, D. F., Currie, D. H., & Stephanopoulos, G. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi). Metab Eng, 48, 243-253, 2018. https://doi.org/10.1016/j.ymben.2018.06.006
    175. Wu, S. S., Li, Q. C., Yin, C. Q., Xue, W., & Song, C. Q. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics, 10(10), 4374-4382, 2020. https://doi.org/10.7150/thno.43360
    176. Xiao, H., Bao, Z., & Zhao, H. High throughput screening and selection methods for directed enzyme evolution. Ind Eng Chem Res, 54(16), 4011-4020, 2015. https://doi.org/10.1021/ie503060a
    177. Xing, X., Li, X. F., Xiao, X. L., Tang, Y. Q., & Zhao, G. L. Facile and efficient acylation of bioflavonoids using whole-cell biocatalysts in organic solvents. ACS Sustain Chem Eng, 5(11), 10662-10672, 2017. https://doi.org/10.1021/acssuschemeng.7b02628
    178. Xue, C., Hsu, K. M., Chiu, C. Y., Chang, Y. K., & Ng, I. S. Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine. Chemosphere, 266, 128967, 2021a. https://doi.org/10.1016/j.chemosphere.2020.128967
    179. Xue, C., & Ng, I. S. Sustainable production of 4-aminobutyric acid (GABA) and cultivation of Chlorella sorokiniana and Chlorella vulgaris as circular economy. Bioresour Technol, 343, 126089, 2022. https://doi.org/10.1016/j.biortech.2021.126089
    180. Xue, C. F., Hsu, K. M., Ting, W. W., Huang, S. F., Lin, H. Y., Li, S. F., Chang, J. S., & Ng, I. S. Efficient biotransformation of L-lysine into cadaverine by strengthening pyridoxal 5 '-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochem Eng J, 161, Article 107659, 2020. https://doi.org/10.1016/j.bej.2020.107659
    181. Xue, C. F., Yi, Y. C., & Ng, I. S. Migration of glutamate decarboxylase by cold treatment on whole-cell biocatalyst triggered activity for 4-aminobutyric acid production in engineering Escherichia coli. Int J Biol Macromol, 190, 113-119, 2021b. https://doi.org/10.1016/j.ijbiomac.2021.08.166
    182. Xue, C. F., Yu, T. H., & Ng, I. S. Engineering pyridoxal kinase PdxY-integrated Escherichia coli strain and optimization for high-level 5-aminolevulinic acid production. J Taiwan Inst Chem Eng, 120, 49-58, 2021c. https://doi.org/10.1016/j.jtice.2021.03.017
    183. Yang, B., Liang, S., Liu, H., Liu, J., Cui, Z., & Wen, J. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol. Bioresour Technol, 267, 599-607, 2018. https://doi.org/10.1016/j.biortech.2018.07.082
    184. Yang, D., Park, S. Y., & Lee, S. Y. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv Sci, 8(13), e2100743, 2021. https://doi.org/10.1002/advs.202100743
    185. Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A, 117(3), 1496-1503, 2020. https://doi.org/10.1073/pnas.1914677117
    186. Yang, S. C., Ting, W. W., & Ng, I. S. Effective whole cell biotransformation of arginine to a four-carbon diamine putrescine using engineered Escherichia coli. Biochem Eng J, 185, Article 108502, 2022. https://doi.org/10.1016/j.bej.2022.108502
    187. Yang, S. Y., Liu, S. M., Jiang, M., Wang, B. S., Peng, L. H., & Zeng, C. Enhancing effect of macroporous adsorption resin on gamma-aminobutyric acid production by Enterococcus faecium in whole-cell biotransformation system. Amino Acids, 52(5), 771-780, 2020. https://doi.org/10.1007/s00726-020-02850-3
    188. Yang, T. X., Zhao, L. Q., Wang, J., Song, G. L., Liu, H. M., Cheng, H., & Yang, Z. Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents. ACS Sustain Chem Eng, 5(7), 5713-5722, 2017. https://doi.org/10.1021/acssuschemeng.7b00285
    189. Yang, X., Ke, C., Zhu, J., Wang, Y., Zeng, W., & Huang, J. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst. Appl Microbiol Biotechnol, 102(8), 3623-3633, 2018. https://doi.org/10.1007/s00253-018-8881-0
    190. Yang, Y., Tsui, H. C., Man, T. K., & Winkler, M. E. Identification and function of the pdxY gene, which encodes a novel pyridoxal kinase involved in the salvage pathway of pyridoxal 5'-phosphate biosynthesis in Escherichia coli K-12. J Bacteriol, 180(7), 1814-1821, 1998. https://doi.org/10.1128/jb.180.7.1814-1821.1998
    191. Yang, Y., Zhao, G., & Winkler, M. E. Identification of the pdxK gene that encodes pyridoxine (vitamin B6) kinase in Escherichia coli K-12. FEMS Microbiol Lett, 141(1), 89-95, 1996. https://doi.org/10.1111/j.1574-6968.1996.tb08368.x
    192. Yi, Y. C., & Ng, I. S. Establishment of toolkit and T7RNA polymerase/promoter system in Shewanella oneidensis MR-1. J Taiwan Inst Chem Eng 109, 8-14, 2020. https://doi.org/10.1016/j.jtice.2020.02.003
    193. Yoon, S. H., Han, M. J., Jeong, H., Lee, C. H., Xia, X. X., Lee, D. H., Shim, J. H., Lee, S. Y., Oh, T. K., & Kim, J. F. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol, 13(5), R37, 2012. https://doi.org/10.1186/gb-2012-13-5-r37
    194. Yoshida, T., Yamashino, T., Ueguchi, C., & Mizuno, T. Expression of the Escherichia coli dimorphic glutamic acid decarboxylases is regulated by the nucleoid protein H-NS. Biosci Biotechnol Biochem, 57(9), 1568-1569, 1993. https://doi.org/10.1271/bbb.57.1568
    195. You, S. K., Ko, Y. J., Shin, S. K., Hwang, D. H., Kang, D. H., Park, H. M., & Han, S. O. Enhanced CO2 fixation and lipid production of Chlorella vulgaris through the carbonic anhydrase complex. Bioresour Technol, 318, 124072, 2020. https://doi.org/10.1016/j.biortech.2020.124072
    196. Yu, T. H., Yi, Y. C., Shih, I. T., & Ng, I. S. Enhanced 5-aminolevulinic acid production by co-expression of codon-optimized hemA gene with chaperone in genetic engineered Escherichia coli. Appl Biochem Biotechnol, 191(1), 299-312, 2020. https://doi.org/10.1007/s12010-019-03178-9
    197. Yuan, H., Wang, H., Fidan, O., Qin, Y., Xiao, G., & Zhan, J. Identification of new glutamate decarboxylases from Streptomyces for efficient production of γ-aminobutyric acid in engineered Escherichia coli. J Biol Eng, 13, 24, 2019. https://doi.org/10.1186/s13036-019-0154-7
    198. Yun, J., Zabed, H. M., Zhang, Y., Zhang, G., Zhao, M., & Qi, X. Improving tolerance and 1,3-propanediol production of Clostridium butyricum using physical mutagenesis, adaptive evolution and genome shuffling. Bioresour Technol, 363, 127967, 2022. https://doi.org/10.1016/j.biortech.2022.127967
    199. Zamani, M., Nezafat, N., & Ghasemi, Y. Evaluation of recombinant human growth hormone secretion in E. coli using the L-asparaginase II signal peptide. Avicenna J Med Biotechnol, 8(4), 182-187, 2016. http://doi.org/ 10.1007/s12033-014-9818-1
    200. Zelić, B., Gostović, S., Vuorilehto, K., Vasić-Racki, D., & Takors, R. Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng, 85(6), 638-646, 2004. https://doi.org/10.1002/bit.10820
    201. Zhang, J., Kang, Z., Chen, J., & Du, G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci Rep, 5, 8584, 2015. https://doi.org/10.1038/srep08584
    202. Zhang, J., Weng, H., Zhou, Z., Du, G., & Kang, Z. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresour Technol, 274, 353-360, 2019. https://doi.org/10.1016/j.biortech.2018.12.004
    203. Zhang, L., King, E., Luo, R., & Li, H. Development of a high-throughput, in vivo selection platform for NADPH-dependent reactions based on redox balance principles. ACS Synth Biol, 7(7), 1715-1721, 2018. https://doi.org/10.1021/acssynbio.8b00179
    204. Zhao, C., Zhang, Y., & Li, Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnol Adv, 37(7), 107402, 2019. https://doi.org/10.1016/j.biotechadv.2019.06.001
    205. Zhu, B., Chen, G., Cao, X., & Wei, D. Molecular characterization of CO2 sequestration and assimilation in microalgae and its biotechnological applications. Bioresour Technol, 244, 1207-1215, 2017. https://doi.org/10.1016/j.biortech.2017.05.199
    206. Zhu, C., Chen, J., Wang, Y., Wang, L., Guo, X., Chen, N., Zheng, P., Sun, J., & Ma, Y. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol Bioeng, 116(8), 2018-2028, 2019. https://doi.org/10.1002/bit.26981
    207. Zhu, F. H., Liu, D. H., & Chen, Z. Recent advances in biological production of 1,3-propanediol: new routes and engineering strategies. Green Chem, 24(4), 1390-1403, 2022. https://doi.org/10.1039/d1gc04288b
    208. Zhu, T., Yao, D., Li, D., Xu, H., Jia, S., Bi, C., Cai, J., Zhu, X., & Zhang, X. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate. Biotechnol Bioeng, 118(12), 4699-4707, 2021. https://doi.org/10.1002/bit.27934
    209. Zhuang, X., Yang, C., Murphy, K. R., & Cheng, C. C. Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc Natl Acad Sci U S A, 116(10), 4400-4405, 2019. https://doi.org/10.1073/pnas.1817138116

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE