簡易檢索 / 詳目顯示

研究生: 李宗訓
Li, Tsung-Hsun
論文名稱: 連續型線性規劃問題的演算法
Algorithm for separated continuous linear programming problems
指導教授: 吳順益
Wu, Soon-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 16
中文關鍵詞: 連續型線性規劃無限維線性規劃線性函數離散法
外文關鍵詞: separated continuous linear programming, infinite linear programming, linear function, discretization methed
相關次數: 點閱:135下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究連續型式的線性規劃問題,其中可行解落在L∞空間中。在此利用線性函數的性質發展出特殊的離散方法去求出此問題的最佳解。在最後利用我們發展的演算法來解一些數值例子,並與其他的離散方法做比較。

    This thesis studies the separated continuous linear programming problems. The feasible solution is taken in the L∞ space. The special discrete method is proposed to find optimal solutions and is derived from the characteristic of linear function. Some numerical example are given to implement the proposed algorithm and to compare the result with other algorithms.

    Contents 1 Introduction 1 2 Algorithm for solving SCLP 2 3 Numerical result 9 References 15

    [1]E.J. Anderson, A continuous model for job-shop scheduling, Ph. D. thesis, University of Cambridge, 1978.
    [2]E.J. Anderson, A new continuous model for job-shop scheduling, Int. J. Sys. Sci., vol.12, pp.1469-1475, 1981.
    [3]E.J. Anderson and P. Nash, Linear Programming in Infinite Dimensional Spaces, Wiley, Chichester, 1987.
    [4]E.J. Anderson and M.C. Pullan, Purification for separated continuous linear programs, Math. Methods Oper. Res., vol.49, pp.9-33, 1996.
    [5]R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.
    [6]R.N. Buie and J. Abrham, Numerical solutions to continuous linear programming problems, Z. Oper. Res., vol.17, pp.107-117, 1973.
    [7]G.B. Dantzig, Large scale systems optimization with applications to energy, Technical report SOL 77-3. Department of Operations Research, Stanford University, Stanford, 1977.
    [8]L. Fleischer and J. Sethuraman, Efficient algorithm for separated continuous linear programs: the multicommodity flow problem with holding costs and extensions, Math. Oper. Res., vol.30, pp.916-938, 2005.
    [9]A. Friedman, Foundations of Modern Analysis, Dover, New York, 1982.
    [10]R.C. Grinold, Continuous progrqamming part one: linear objectives, J. Math. Anal. Appl., vol.28, pp.32-51, 1969.
    [11]R.C. Grinold, Symmetry duality for a class of continuous linear programming problems, SIAM J. Appl. Math., vol.18, pp.84-97, 1970.
    [12]N. Levinson, A class of continuous linear programming problems, J. Math. Anal. Appl., vol.16, pp.73-83, 1966.
    [13]M.C. Pullan, An algorithm for a class of continuous linear programs, SIAM J. Control Optim., vol.31, pp.1558-1577, 1993.
    [14]M.C. Pullan, A duality theory for separated continuous linear programs, SIAM J. Control Optim., vol.34, pp.931-965, 1996.
    [15]M.C. Pullan, An extended algorithm for separated continuous linear programs, Math. Program. Ser. A., vol.93, pp.415-451, 2002.
    [16]H.L. Royden and P.M. Fitzpatrick, Real Analysis, Prentice-Hall, New Jersey, 2010.
    [17]W.F. Tyndall, A duality theorem for a class of continuous linear programming problems,SIAM J. Appl. Math., vol.13, pp.644-666, 1965.
    [18]W.F. Tyndall, A extended duality theory for continuous linear programming problems, SIAM J. Appl. Math., vol.15, pp.1294-1298, 1967.
    [19]X. Wang, Theory and algorithm for separated continuous linear programming and its extendsions, Ph. D. thesis, The Chinese University of Hong Kong, Hong Kong, China, 2005.
    [20]C.F. Wen, Y.Y. Lur and Y.K. Wu, A recurrence method for a special class of continuous time linear programming problems, J. Global Optim., vol.47, pp.83-106, 2010.

    下載圖示 校內:立即公開
    校外:2013-07-01公開
    QR CODE