| 研究生: |
王承偉 Wang, Cheng-Wei |
|---|---|
| 論文名稱: |
黏菌氯離子通道蛋白之分子分析與功能研究 Molecular Analysis and Functional Study of Chloride Channel Protein in Dictyostelium |
| 指導教授: |
張文粲
Chang, Wen-Tsan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 吞噬作用 、南方吸漬法 、標定序列分析 、基因標定 、黏菌 、氯離子通道蛋白 |
| 外文關鍵詞: | Dictyostelium, chloride channel protein, gene targeting, EST, phagocytosis, Southern blot |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氯離子通道為一種離子傳遞蛋白質,常見於各種型態的細胞中,其主要的功能包括:細胞體積的調節、膜間物質的傳遞、膜間電位的調控以及調節胞內酸化。研究發現各種不同的物種基因庫中均存在著氯離子通道蛋白的基因序列,由此證實其與細胞或個體的生存有著密不可分的關係。我們自黏菌的EST基因庫中釣出了一段氯離子通道基因序列,將其命名為clcA基因,clcA轉譯產生的ClcA蛋白共包含了863個氨基酸,並且經比對後發現ClcA與老鼠的氯離子通道蛋白RnCLC-7有最高的相似性,而RnCLC-7蛋白經研究指出其功能是在於蝕骨細胞的外酸化作用。因此,為了找出ClcA蛋白的功能,我們先利用南方墨點法分析出clcA為單一拷貝基因,利用反轉錄聚合酶連鎖反應得知clcA基因於發育期的16~20小時間具有最大表現量,之後利用同源重組作用,我們創造出clcA基因剔除突變株。此突變株於細菌培養基上展現出一種叢枝狀的多細胞結構,但在進行缺乏養分的發育實驗中,此一奇特表型卻不復見,只是延遲發育約6~8小時,而令人驚訝的是,我們將clcA-突變株細胞與細菌混和進行發育實驗後,又再度觀察到其特殊表型。雖然在進行胞內酸化測定及細菌吞噬作用能力分析試驗後,比較突變株與野生株的結果並無差別,但我們認為clcA-突變株的表型或缺失應與此種細菌的存在或其代謝物及分泌物有著直接的關係。另外,我們利用數位基因轉殖法釣出了另一段黏菌氯離子通道基因clcB,經由比對後發現其與植物的阿拉伯芥氯離子通道蛋白AtCLC-d有著最高的相似性,這似乎也應證了黏菌兼具動植物行為的特性。
Chloride channels are passive anion transport proteins involved in functions common to all cells, such as regulation of cell volume, transepithelial salt transport, electrical excitability and intracellular acidification. There is evidence from genome sequencing for multiple chloride channels in a wide rang of species ranging from bacteria to human. ClcA, a putative Dictyostelium chloride channel protein is identified from the EST database, composes of 863 amino acid residues and has 34% identities to mouse chloride channel protein CLC-7 that provides the chloride conductance required for an efficient proton pumping by the H+-ATPase of the osteoclast ruffled membrane and induced extracellular acidification. Southern blot analysis indicated clcA is a single copy gene. RT-PCR analysis indicated that clcA mRNA was expressed with a higher level during 16-20 hr of development. To understand the functions of ClcA, we created the clcA- cells, which contain a disrupted gene generated by homologous recombination. clcA- cells aggregate to form a multiple tip-like structure and shorter fruiting bodies on bacterial agar, but the strange structures were not observed in development. It just delayed about 6-8 hr. Surprisingly, we recreated the multiple tip-like phenotype of clcA- cells in development by mixing with bacteria, so we consider that the defects of clcA- cells may relate to the existence of bacteria. To identify the defects of acidification in clcA- cells, different NH4+ concentration development and measurement of intracellular pH were processed. We also used FACS to determine phagocytosis ability of wild-type and clcA- cells, but the results were shown that there was no difference in intracellular pH and phagocytosis between mutant and wild-type cells. Furthermore, using digital-cloning, we have identified another chloride channel gene, clcB. It indicated that there may be some functional redundance of chloride channel protein in Dictyostelium.
Adam, R., and James, C. (2001). Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum. Biochim. Biophys. Acta. 1525, 205-216.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol. 215, 403-410.
Aubry, L., and Firtel, R. (1999). Integration of signaling networks that regulate Dictyostelium differentiation. Annu Rev Cell Dev Biol. 15, 469-517.
Aubry, L., Klein, G., Martiel, J. L., and Satre, M. (1993). Kinetics of endosomal pH evolution in Dictyostelium discoideum amoebae. Study by fluorescence spectroscopy. J Cell Sci. 105, 861-866.
Bateman, A. (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci. 22, 12-13
Bosl, M. R., Stein, V., Hubner, C., Zdebik, A. A., Jordt, S. E., Mukhopadhyay, A. K., Davidoff, M. S., Holstein, A. F., and Jentsch, T. J. (2001). Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl- channel disruption. EMBO J. 20, 1289-1299.
Chen, C. F., and Katz, E. R. (2000). Mediation of cell-substratum adhesion by RasG in Dictyostelium. J Cell Biochem. 79, 139-149.
Cohen, C. J., Bacon, R., Clarke, M., Joiner, K., and Mellman, I. (1994). Dictyostelium discoideum mutants with conditional defects in phagocytosis. J Cell Biol. 126, 955-966.
Conte Camerino, D., De Luca, A., Mambrini, M., and Vrbova, G. (1989). Membrane ionic conductances in normal and denervated skeletal muscle of the rat during development. Pflugers Arch. 413, 568-570.
Davies, L., Satre, M., Martin, J. B., and Gross, J. D. (1993). The target of ammonia action in Dictyostelium. Cell. 75, 321-327.
Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T., and MacKinnon, R. (2002). X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 415, 287-294.
Estevez, R., Boettger, T., Stein, V., Birkenhager, R., Otto, E., Hildebrandt, F., and Jentsch, T. J. (2001). Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature. 414, 558-561.
Firtel, R. A. (1995). Integration of signaling information in controlling cell-fate decisions in Dictyostelium. Genes Dev. 9, 1427-1444.
Farnsworth, P. A., and Loomis, W. F. (1975). A gradient in the thickness of the surface sheath in pseudoplasmodia of Dictyostelium discoideum. Dev Biol. 46, 349-357.
Gaxiola, R. A., Yuan, D. S., Klausner, R. D., and Fink, G. R. (1998). The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci U S A. 95, 4046-4050.
George, A. L. Jr., Bianchi, L., Link, E. M., and Vanoye, C. G. (2001). From stones to bones: the biology of ClC chloride channels. Curr Biol. 11, R620-628.
Glotzer, M. (2001). Animal cell cytokinesis. Annu Rev Cell Dev Biol. 17, 351-386.
Greene, J. R., Brown, N. H., DiDomenico, B. J., Kaplan, J., and Eide, D. J. (1993). The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth. Mol Gen Genet. 241, 542-553.
Gründer, S., Thiemann, A., Pusch, M., and Jentsch, T. J. (1992). Regions involved in the opening of ClC-2 chloride channel by voltage and cell volume. Nature. 360, 759-762.
Hanks, M., Wurst, W., Anson-Cartwright, L., Auerbach, A. B., and Joyner, A. L. (1995). Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science. 269, 679-682.
Hechenberger, M., Schwappach, B., Fischer, W. N., Frommer, W. B., Jentsch, T. J., and Steinmeyer, K. (1996). A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem. 271, 33632-33638.
Henikoff, S., and Henikoff, J. G. (1991). Automated assembly of protein blocks for database searching. Nucleic Acids Res. 19, 6565-6572.
Jentsch, T. J., Friedrich, T., Schriever, A., and Yamada, H. (1999). The CLC chloride channel family. Pflugers Arch. 437, 783-795.
Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. (2002). Molecular structure and physiological function of chloride channels. Physiol Rev. 82, 503-568.
Jentsch, T. J., Steinmeyer, K., and Schwarz, G. (1990). Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature. 348, 510-514.
Kida, Y., Uchida, S., Miyazaki, H., Sasaki, S., and Marumo, F. (2001). Localization of mouse CLC-6 and CLC-7 mRNA and their functional complementation of yeast CLC gene mutant. Histochem Cell Biol. 115, 189-194.
Kieferle, S., Fong, P., Bens, M., Vandewalle, A., and Jentsch, T. J. (1994). Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci U S A. 91, 6943-6947.
Klein, G., Cotter, D. A., Martin, J. B., and Satre, M. (1989). Vanadate, an inhibitor of growth, development and endocytosis in Dictyostelium discoideum amoebae. J. Cell Sci., 94, 127-134.
Koch, M. C., Steinmeyer, K., Lorenz, C., Ricker, K., Wolf, F., Otto, M., Zoll, B., Lehmann-Horn, F., Grzeschik, K. H., and Jentsch, T. J. (1992). The skeletal muscle chloride channel in dominant and recessive human myotonia. Science. 257, 797-800.
Kornak, U., Kasper, D., Bosl, M. R., Kaiser, E., Schweizer, M., Schulz, A., Friedrich, W., Delling, G., and Jentsch, T. J. (2001). Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 104, 205-215.
Kuspa, A., and Loomis, W. F. (1996). Ordered yeast artificial chromosome clones representing the Dictyostelium discoideum genome. Proc Natl Acad Sci U S A. 93, 5562-5566.
Loomis, W. F. (1971). Sensitivity of Dictyostelium discoideum to nucleic acid analogues. Exp Cell Res. 64, 484-486.
Loomis, W. F. (1996). Genetic networks that regulate development in Dictyostelium cells. Microbiol Rev. 60, 135-150.
Loomis, W. F., and Smith, D. W. (1995). Experientia. 51, 1110-1115.
Ludewig, U., Pusch, M., and Jentsch, T. J. (1996). Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature. 383, 340-343.
Maeda, M., and Takeuchi, I. (1997). [Dictyostelium] Tanpakushitsu Kakusan Koso. 42, 2914-2919.
Maduke, M., Williams, C., and Miller, C. (1998). Formation of CLC-0 chloride channels from separated transmembrane and cytoplasmic domains. Biochemistry. 37, 1315-1321.
Matsumura, Y., Uchida, S., Kondo, Y., Miyazaki, H., Ko, S. B., Hayama, A., Morimoto, T., Liu, W., Arisawa, M., Sasaki, S., and Marumo, F. (1999). Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet. 21, 95-98.
Michael, G. (2001). Animal cell cytokinesis. Annu. Rev. Cell Dev. Biol. 17, 351-386.
Morio, T., Urushihara, H., Saito, T., Ugawa, Y., Mizuno, H., Yoshida, M., Yoshino, R., Mitra, B. N., Pi, M., Sato, T., Takemoto, K., Yasukawa, H., Williams, J., Maeda, M., Takeuchi, I., Ochiai, H., and Tanaka, Y. (1998). The Dictyostelium developmental cDNA project: generation and analysis of expressed sequence tags from the first-finger stage of development. DNA Res. 5, 1-7.
Nagano, S. (2000) Modeling the model organism Dictyostelium discoideum. Dev. Growth Differ. 42, 541-550.
Newell, P. C., and Ross, F. M. (1982). Genetic analysis of the slug stage of Dictyostelium discoideum. J. Gen. Microbiol. 128, 1639-1652.
Pier, G. B. (2000). Role of the cystic fibrosis transmembrane conductance regulator in innate immunity to Pseudomonas aeruginosa infections. Proc Natl Acad Sci U S A. 97, 8822-8828.
Pier, G. B., Grout, M., Zaidi, T. S., Olsen, J. C., Johnson, L. G., Yankaskas, J. R., and Goldberg, J. B. (1996). Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science. 271, 64-67.
Pier, G. B., Grout, M., and Zaidi, T. S. (1997). Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci U S A. 94, 12088-12093.
Pintsch, T., Satre, M., Klein, G., Martin, J. B., and Schuster, S. C. (2001). Cytosolic acidification as a signal mediating hyperosmotic stress responses in Dictyostelium discoideum. BMC Cell Biol. 2, 9.
Piwon, N., Gunther, W., Schwake, M., Bosl, M. R., and Jentsch, T. J. (2000). ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature. 408, 369-373.
Rupper, A., and Cardelli, J. (2001). Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum. Biochim Biophys Acta. 1525, 205-216.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Schmidt-Rose, T., and Jentsch, T. J. (1997). Transmembrane topology of a CLC chloride channel. Proc Natl Acad Sci U S A. 94, 7633-7638.
Schriever, A. M., Friedrich, T., Pusch, M., and Jentsch, T. J. (1999). CLC chloride channels in Caenorhabditis elegans. J. Biol. Chem. 274, 34238-34244.
Schwappach, B., Stobrawa, S., Hechenberger, M., Steinmeyer, K., and Jentsch, T. J. (1998). Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J Biol Chem. 273, 15110-15118.
Simon, D. B., Bindra, R. S., Mansfield, T. A., Nelson-Williams, C., Mendonca, E., Stone, R., Schurman, S., Nayir, A., Alpay, H., Bakkaloglu, A., Rodriguez-Soriano, J., Morales, J. M., Sanjad, S. A., Taylor, C. M., Pilz, D., Brem, A., Trachtman, H., Griswold, W., Richard, G. A., John, E., and Lifton, R. P. (1997). Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet. 17, 171-178.
Steinmeyer, K., Ortland, C., and Jentsch, T. J. (1991). Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature. 354, 301-304.
Steitz, T. A. (1999). DNA polymerases: structural diversity and common mechanisms. J Biol Chem. 274, 17395-17398.
Stobrawa, S. M., Breiderhoff, T., Takamori, S., Engel, D., Schweizer, M., Zdebik, A. A., Bosl, M. R., Ruether, K., Jahn, H., Draguhn, A., Jahn, R., and Jentsch, T. J. (2001). Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron. 29, 185-196.
Strange, K., Emma, F., and Jackson, P. S. (1996). Cellular and molecular physiology of volume-sensitive anion channels. Am J Physiol. 270, C711-730.
Sussman, M. (1987). Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. Methods Cell Biol. 28, 9-29.
Sutoh, K. (1993). A transformation vector for Dictyostelium discoideum with a new selectable marker bsr. Plasmid. 30, 150-154.
Wallace, J. S., and Newell, P. C. (1982). Genetic analysis by mitotic recombination in Dictyostelium discoideum of growth and developmental loci on linkage group VII. J Gen Microbiol. 128, 953-964.
Watts, D. J., and Ashworth, J. M. (1970). Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 119, 171-174.
Weeks, G., and Gross, J. D. (1991). Potential morphogens involved in pattern formation during Dictyostelium differentiation. Biochem Cell Biol. 69, 608-617.
White, M. M., and Miller, C. (1979). A voltage-gated anion channel from the electric organ of Torpedo californica. J Biol Chem. 254, 10161-10166.
Williams, J. (1995). Morphogenesis in Dictyostelium: new twists to a not-so-old tale. Curr Opin Genet Dev. 5, 426-431.
Williams, J. G. (1991). Regulation of cellular differentiation during Dictyostelium morphogenesis. Curr Opin Genet Dev. 1, 358-362.