簡易檢索 / 詳目顯示

研究生: 陳姿樺
Chen, Tzu-Hua
論文名稱: 透明可見光催化二氧化鈦自潔表面之研究 –氮摻雜溫度及薄膜厚度的影響
Study of Transparent Visible-Light-Active TiO2 Self-Cleaning Surfaces–Effects of N-Doping Temperature and Thin Film Thickness
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 118
中文關鍵詞: 可見光催化奈米粒子薄膜氮摻雜靜電逐層組裝透明抗反射自潔摻雜反應溫度薄膜厚度氧空缺
外文關鍵詞: TiO2/SiO2 nanoparticulate thin film, nitrogen-doped, electrostatic layer-by-layer (ELbL), transparent, antireflection, self-cleaning, calcination temperature, thin film thickness, oxygen vacancy
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在於製備透明且可見光催化的TiO2/SiO2奈米粒子薄膜,並探討氮摻雜反應溫度及厚度與薄膜自潔特性的關聯。本研究運用全奈米粒子 (all-nanoparticle) 靜電逐層 (electrostatic layer-by-layer, ELbL) 組裝技術,在玻璃基板上交替沉積7 nm TiO2與22 nm SiO2奈米粒子,並經由以每30個雙層為一週期的週期性鍛燒製程,製備多雙層的奈米粒子薄膜;再於氨氣氣氛下高溫鍛燒 (450 ℃-600 ℃) 以獲得氮摻雜TiO2/SiO2可見光催化薄膜,並測定薄膜的氮摻雜反應溫度與厚度對亞甲藍分子在可見光下降解速率的影響。
    由實驗結果顯示,本研究製備的奈米粒子薄膜 (1-120雙層) 的平均雙層厚度為20.07±0.03,平均折射率為1.29±0.05,都具有抗反射特性且平均穿透度皆高於玻璃,並有效地將光的吸收延伸至可見光區域。實驗結果也顯示,氮摻雜反應溫度對薄膜的亞甲藍可見光降解速率有一最佳值。本文也提出氮摻雜改變TiO2能階型態有助電子/電洞的產生及氮摻雜伴隨氧空缺的產生而形成電子/電洞再結合中心的雙重效應,解釋此一現象。另一方面,不同厚度氮摻雜的薄膜進行可見光降解亞甲藍實驗可知,薄膜皆具有相同的可見光催化能力,亦即可見光催化降解速率不因厚度而有所改變。

    The main purpose of this work is to fabricate a transparent visible-light-active nitrogen-doped TiO2/SiO2 self-cleaning surfaces. All-nanoparticle thin film coatings on glass substrates by electrostatic layer-by-layer (ELbL) assembly of 7 nm TiO2 and 22 nm SiO2 nanoparticles were performed. Followed by periodic calcination process after every 30 bilayers, then calcine the coatings under ammonia gas flow with different temperature and number of bilayer, multibilayer nitrogen-doped nanoparticulate thin films (TiO2-δNδ/SiO2 )X with x=1-120 can be fabricated and to determine effects of N-doping temperature and thin film thickness under visible light illumination.
    Antireflective property was exhibited by all of the nanoparticulate thin films fabricated as revealed by UV-vis transmittance spectra. In addition, average refractive indices of the nanoparticle thin films about 1.31±0.05 and linear growth behavior nearly 20.03±0.07 nm for a bilayer of the multilayers were determined using ellipsometry and scanning electron microscopy. According the result of experiment, N-doped TiO2 thin film can be fabricated by different calcination temperature under NH3 gas flow and extend absorbance wavelength from UV light to visible light. Beside, there is an optimum calcination temperature condition (500℃/NH3) to show the best photocatalytic activity which is evaluated by the degradation of methylene blue under visible light illumination. This suggests that the isolated narrow band formed above the valence band is responsible for the visible light response in the present N-doped TiO2 but nitrogen doping is likely to be accompanied by oxygen vacancy formation. Furthermore, photocatalytic degradation of methylene blue by the nanoparticle thin films with different number of bilayers under visible light illumination showed the same self-cleaning property.

    摘要……………………………………………………………………I Abstract……………………………………………………………………….II 誌謝………………………………………………………………………….IV 目錄………………………………………………………………………….VI 表目錄………………………………………………………………………..X 圖目錄……………………………………………………………………….XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 光觸媒之歷史背景 3 2.2 二氧化鈦基本特性 6 2.2.1 紫外光催化二氧化鈦 6 2.2.2 可見光催化二氧化鈦 15 2.3 靜電逐層組裝技術 29 2.3.1 靜電逐層組裝原理 29 2.3.2 全奈米粒子薄膜 31 2.4 抗反射光學薄膜 34 2.4.1 抗反射原理 34 2.4.2 破壞性干涉機制 34 2.4.3 漸變折射率機制 36 2.4.4 抗反射光學薄膜製作 38 第三章 實驗 40 3.1 藥品 40 3.2 實驗儀器 43 3.2.1 浸鍍機/機械手臂 (Dip-coater) 43 3.2.2 Mili-Q超純水系統 43 3.2.3箱型高溫爐 44 3.2.4 管狀高溫爐 44 3.2.5 超音波震盪器 (Ultrasonic cleaner) 45 3.2.6 多功能光化學反應器 (Photoreactor) 46 3.2.7 掃瞄式電子顯微鏡 (Scanning Electron Microscope , SEM) 46 3.2.8 雷射光散射法粒徑測定儀 (Zeta-sizer) 47 3.2.9 紫外光/可見光光譜儀 (UV-vis Spectrophotometer) 49 3.2.10 橢圓偏光儀 (Ellipsometer) 50 3.2.11 二次離子質譜儀 (secondary ion mass spectrometer;SIMS) 52 3.2.12 光學薄膜設計分析軟體 53 3.3 實驗方法 54 3.3.1 玻璃基板之清洗 54 3.3.2 溶液配製 54 3.3.3 靜電逐層組裝TiO2/SiO2奈米粒子薄膜 55 3.3.4 二氧化鈦奈米粒子薄膜製程 56 3.3.5 二氧化鈦奈米粒子薄膜的鍛燒條件 56 3.3.5.1 氮摻雜二氧化鈦奈米粒子薄膜: 56 3.3.5.2二氧化鈦奈米粒子薄膜: 57 3.3.6 薄膜吸收度與穿透度量測 57 3.3.7 光催化降解有機物反應 58 3.3.8 二氧化鈦奈米粒子薄膜其他性質之鑑定 59 第四章 結果與討論 60 4.1 二氧化鈦/二氧化矽全奈米粒子膠體溶液特性分析 60 4.2 氮摻雜反應溫度對薄膜自潔特性之研究 62 4.2.1 (TiO2-δNδ/SiO2)60* 奈米粒子薄膜穿透度之分析 62 4.2.2 (TiO2-δNδ/SiO2)60* 奈米粒子薄膜吸收度之分析 66 4.2.3 (TiO2-δNδ/SiO2)60* 奈米粒子薄膜表面型態之分析 68 4.2.4 (TiO2-δNδ/SiO2)60* 奈米粒子薄膜厚度之分析 71 4.2.5 (TiO2-δNδ/SiO2)60* 奈米粒子薄膜折射率之分析 74 4.2.6 (TiO2-δNδ/SiO2)60* 奈米粒子薄膜可見光催化能力之研究 76 4.2.6.1 光觸媒薄膜分解亞甲藍實驗 76 4.2.6.2 (TiO2-δNδ/SiO2)60* 奈米粒子薄膜於可見光下降解亞甲藍速率之分析 78 4.2.7 改變氮摻雜反應溫度對薄膜可見光催化能力之影響 82 4.3 厚度對薄膜自潔特性之研究 86 4.3.1 (TiO2-δNδ/SiO2)x 奈米粒子薄膜穿透度之分析 86 4.3.2 (TiO2-δ Nδ /SiO2)x 奈米粒子薄膜吸收度之分析 88 4.3.3 (TiO2-δ Nδ /SiO2)x 奈米粒子薄膜表面型態之分析 90 4.3.4 (TiO2-δNδ/SiO2)x 奈米粒子薄膜厚度之分析 93 4.3.5 (TiO2-δ Nδ /SiO2)x奈米粒子薄膜折射率之分析 96 4.3.6 (TiO2-δ Nδ /SiO2)x 奈米粒子薄膜可見光催化能力之研究 98 4.3.7 改變厚度對薄膜可見光催化能力之影響 102 4.4 (TiO2-δNδ/SiO2)x 奈米粒子薄膜防霧性能測試 104 4.5 (TiO2-δNδ/SiO2)x 奈米粒子薄膜機械性能測試 106 第五章 結論與建議 108 5.1 結論 108 5.2 建議 110 參考文獻 111 自 述 118

    Ariga, K., Hill, J.P., Ji, Q., “Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application,” Phys. Chem. Chem. Phys., 9, 2319-2340 (2007)

    Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, 293, 269-271 (2001)

    Asahi, R., Morikawa, T., “Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis,” Chemical Physics, 339, 57-63 (2007)

    Bouras, P., Stathatos, E., Lianos, P., “Pure versus metal-ion-doped nanocrystalline titania for photocatalysis,” Applied Catalysis B: Environmental, 73, 51-59 (2007)

    Bravo, J., Zhai, L., Wu, Z., Cohen, R.E. and Rubner, M.F., “Transparent superhydrophobic films based on silica nanoparticles,” Langmuir, 23, 7293- 7298 (2007)

    Burda, C., Lou, Y., Chen, X., Samia, A. C. S., Stout, J., Gole, J. L., “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano Lett., 3, 1049- 1051 (2003)

    Chen, D., “Anti-reflection (AR) coatings made by sol-gel processes: A review,” Solar Energy Materials & Solar Cells, 68, 313-336 (2001)

    Coon, S. R., Zakharian, T. Y., Littlefield, N.L., Loheide, S.P., Puchkova, E. J., Freeney, R. M., Pak, V. N., “Reversible metachromasy of crystal violet on titanium dioxide: A New Surface Photophysical Phenomenon,” Langmuir, 16, 9690-9693 (2000)

    Chen, S. Z., Zhang, P. Y., Zhuang, D. M., Zhu, W. P., “Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering,” Catalysis Communications, 5, 677-680 (2004)

    Decher, G., “Fuzzy nanoassemblies : toward layered polymeric multicomposites,” Science, 277, 1232-1237 (1997)

    Decher, G. and Hong, J.D., “Build up of ultrathin multilayer films by a self-assembly process : I. consecutive adsorption of anionic and cationic bipolar amphiphiles,” Markromol. Chem. Macromol. Symp, 46, 321 (1991a)

    Decher, G. and Hong, J.D., “Build up of ultrathin multilayer films by a self-assembly process : I. consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces,” Ber. Bunsen-Ges. Phys. Chem., 95, 1430 (1991b)

    Diwald, O., Thompson, T. L., Goralski, Ed G., Walck, S. D., Yates, J. T., Journal of Physical and Chemistry B, 108, 52-57 (2004)

    Essential Macleod V8.16, Thin Film Center Inc. (2008)

    Fang, X., Zhang, Z., Chen, Q., “Nitrogen doped TiO2 photocatalysts with visible-light activity,” Progress in Chemistry, 19, 1282-1289 (2007)

    Frank, S. N. and Bard, A. J., “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders,” Journal of Physical Chemistry, 81, 1484-1488 (1977)

    Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37 (1972)

    Fujishima, A., Zhang, X. and Tryk, D. A., “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, 63, 515- 582 (2008)

    Fujishima, A. and Zhang, X., “Titanium dioxide photocatalysis: present situation and future approaches,” A. R. Chimie, 9, 750-760 (2006)

    Fujishima, A., Rao, T.N., Tryk, D.A., “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000)

    Guan, K., “Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films,” Surface & Coatings Technology, 191, 155-160 (2005)

    Hasan, M. M., Haseeb, A. S. M. A., Saidur, R. and Masjuki, H.,”Effect of annealing treatment on optical properties of anatase TiO2 thin films,” Engineering and technology, 30, 221-225 (2008)

    Hashimoto, K., Irie, H., Fujishima, A., “TiO2 Photocatalysis: A historical overview and future prospects,” Japanese Journal of Applied Physics, 44, 8269-8285 (2005)

    Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann,J-M., “Photocatalytic degradation pathway of methylene blue in water,” Applied Catalysis B: Enviromental, 31, 145-157 (2001)

    Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O., Sugihara, S., “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Applied Catalysis B: Environmental, 42, 403-409 (2003)

    Iler, R.K., “Multilayers of colloidal particles,” Journal of Colloid and Interface Science, 21, 569-594 (1966)

    Irie, H., Watanabe, Y., Hashimoto, K., “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” J. Phys. Chem. B, 107, 5483-5486 (2003)

    Irie, H., Washizuka, S., Watanabe, Y., Kako, T., Hashimoto, K., “Photoinduced hydrophilic and electrochemical properties of nitrogen- doped TiO2 films,” Journal of The Electrochemical Society, 152, 11, E351 -E356 (2005)

    Kato, S. and Maschio, F., Abtr. Book Annu. Meet. Chemical Society of Japan, 223 (1956)

    Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C.and Herrmann, J-M., “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania,” Applied Catalysis B Enviromental, 39, 75-90 (2002).

    Lacombe, R., Adhesion Measurement Methods: Theory and Practice, Taylor and Francis, New York (2006)

    Lee, D., Omolade, D., Cohen, R.E., Rubner, M.F., “pH-dependent structure and properties of TiO2/SiO2 nanoparticle multilayer thin films,” Chem. Mater., 19, 1427-1433 (2007)

    Lee, D., Rubner, M.F., Cohen, R.E., “All-nanoparticle thin-film coatings,” Nano Lette., 6, 2305-2312 (2006)

    Lee, S., Yamasue, E., Ishihara, K., Okumura, H., “Photocatalysis and surface doping states of N-doped TiOx films prepared by reactive sputtering with dry air,” Applied Catalysis B: Environmental 93, 217-226 (2010)

    Macleod, H.A., Thin-Film Optical Filters, 2nd ed., McGrew-Hill, New York (1986)

    Mills, A. and McFarlane, M., “Current and possible future methods of assessing the activities of photocatalyst films,” Catalysis Today, 129, 22-28 (2007).

    Mills, A., and Wang, J., “Photobleaching of methylene blue sensitised by TiO2: an ambiguous system?” Journal of Photochemistry and Photobiology A: Chemistry 127, 123-134 (1999)

    Minot, M.J., “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5µ,” Journal of the Optical Society of America, 66, 6, 515-519 (1976)

    Mohamed, S. H., Kappertz, O., Ngaruiya, J. M., Niemeier, T., Drese, D., “Influence of nitrogen content on properties of direct current sputtered TiOxNy films,” Physica Statys Solidi A-Applied Research, 201, 90-102 (2004)

    Mitzi, D.B., “Thin-film deposition of organic-inorganic hybrid materials,” Chem. Mater., 13, 3283-3298 (2001)

    Miyauchi, M., Ikezawa, A., Tobimatsu, H., Irie H., Hashimoto, K., “Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films,” Phys.Chem.Chem.Phys., 6, 865-870 (2004)

    Nakamura, I., Negishi, N., Kutsuna, S., Ihara, T., Sugihara, S., Takeuchi, K., “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” Journal of Molecular Catalysis A: Chemical, 161, 205-212 (2000)

    Nakamura, R., Tanaka, T., Nakato, Y., “Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes,” J. Phys. Chem. B, 108, 10617-10620 (2004)

    Neuman, G.A., “Anti-reflective coatings by APCVD using graded index layers,” Journal of Non-Crystalline Solids, 218, 92-99 (1997)

    Parkin, I. P., Palgrave, R. G., “Self-cleaning coatings,” J. Mater. Chem., 15, 1689-1695 (2005)

    Sato, S., “Photocatalytic activity of NOx-doped TiO2 in the visible light region,” Chemical Physics Letters, 123, 126-128 (1986)

    Stathatos, E., Lianos, P., Tsakiroglou, C., “Metachromatic effects and photodegradation of basic blue on nanocrystalline titania films,” Langmuir, 20, 9103-9107 (2004)

    Suda, Y., Kawasaki, H., Ueda, T., Ohshima, T., “Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method,” Thin Solid Films, 453-454, 162-166 (2004)

    Suda, Y., Kawasaki, H., Ueda, T., Ohshima, T., “Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture,” Thin Solid Films, 475, 337-341 (2005)

    Surovtseva, N. I., Eremenko, A. M., Smirnova, N. P., Pokrovskii, V. A., Fesenko, T. V., Starukh G. N., “The effect of nanosized titania-silica film composition on the photostability of adsorbed methylene blue dye,” Theoretical and Experimental Chemistry, 43, 235-240 (2007)

    Tompkins H. G.and McGahan, W. A., “Spectroscopic ellipsometry and reflectometry: a user guide,” NewYork (1999)

    Valentin, C., Pacchioni, G., Selloni, A., Livraghi, S., Giamello, E., “Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations,” J. Phys. Chem. B, 109, 11414-11419 (2005)

    Wang, R., Hashimoto, K., Fujishima, A., “Light-induced amphiphilic surfaces,” Nature, 388, 431-432 (1997)

    Wang, X. H., Li, J.G., Kamiyama, H., Katada, M., Ohashi, N., Moriyoshi, Y., Ishigaki, T., “Pyrogenic iron (III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties,” J. Am. Chem. Soc., 127, 10982-10998 (2005)

    Wong , M. S., Chou, H. P., Yang, T. S., “Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst,” Thin Solid Films, 494, 244-249 (2006)

    Yamada, K., Yamane, H., Matsushima, S., Nakamura, H., Ohira, K., Kouya, M., Kumada, K., “Effect of thermal on photocatalytic activity of N-doped TiO2 particles under visible light,” Thin Solid Films, 516, 7482-7487 (2008)

    Yang, M. C., Yang, T. S., Wong, M. S., “Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition,” Thin Solid Films, 469-470, 1-5 (2004)

    Yoldas, B.E., “Investigations of porous oxides as an antireflective coating for glass surfaces,” Applied Optics, 19, 9, 1425-1429 (1980)

    Yuan, W., Ji, J., Fu, J. and Shen, J., “A facile method to construct hybrid multilayered films as a stronge and multifunctional antibacterial coating,” J. Biomedical Materials Research – Part B Applied Biomater- ials, 85, 2, 556-563 (2008)

    Zhang, X.T., Fujishima, A., Jin, M., Emeline, AV., Murakami, T., “Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties,” J. Phys. Chem. B 110, 25142-25148 (2006)

    Zhang, X.T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., Fujishima, A., “Self-cleaning particle coating with antireflection properties,” Chem. Mater., 17, 696-700 (2005)

    丁訓、祖庸、李曉娥,『奈米TiO2 表面改性』,化工進展第19期,第1卷,67-70頁 (2000)

    丁嘉仁、許沁如、聶雅玉、張哲瑋,『次波長結構抗反射膜片發展現況』,機械工業雜誌,第282期,71-73頁 (2006)

    土卞田博史,『光觸媒圖解』,商周出版 (2003)

    王文裕,顧洋,『二氧化鈦可見光光觸媒的發展』,界面科學會誌,第2期,第27卷,111-122頁 (2005)

    王武敬,『光學機能性奈米高分子材料於平面顯示器抗反射光學塗裝之應用』,化工資訊與商情 第33期,54-62頁 (2006)

    呂宗昕,『圖解奈米科技與光觸媒』,商周出版社 (2003)

    呂信德,『磁控濺鍍TiO2-WO3複合膜光催化性質之研究』,成功大學資源工程學系碩士論文 (2001)

    李正中,『薄膜光學與鍍膜技術』,藝軒圖書出版社 ( 2001)

    吳依旎,『透明可見光催化二氧化鈦自潔表面的製備與鑑定』,成功大學化學工程學系碩士論文 (2008)

    林書玄,『具抗反射性質的超親水自潔表面之設計與製備』,成功大學化學工程學系碩士論文 (2008)

    高濂,鄭珊,張青紅,『奈米光觸媒』,五南圖書出版 (2004)

    陳水輝,彭峰,王紅娟,『具有可見光活性的光催化劑研究進展』,現代化工,第7期,第24卷,24-27頁 (2004)

    郭建生,曾堯宣,黃嘉宏,黃珧玲,劉淑鈴,李元堯,『化學氣相沉積法製備二氧化鈦薄膜之研究』,化工,第53卷,第5期,20-27 (2006)

    鄭智鴻,『量身訂做的二氧化鈦光觸媒之合成及應用』,成功大學化工系碩士論文 (2006)

    下載圖示 校內:2012-07-19公開
    校外:2012-07-19公開
    QR CODE