| 研究生: |
童淑芬 Tung, Shu-Fen |
|---|---|
| 論文名稱: |
日式木構造歷史建築火載量調查與火害研究 Fire Loads Investigation and Room Fire Study for Japanese-style Wooden Historical Buildings |
| 指導教授: |
曾俊達
Tzeng, Chun-Ta |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 歷史建築 、木構造建築 、火載量 、全尺度火災試驗 、數值模擬 |
| 外文關鍵詞: | historical building, wooden building, fire load, full-scale fire experiment, Fire Dynamics Simulation (FDS) |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國際間對於文化資產保存及維護議題日趨重視,國內文化部將古蹟歷史建築依據其歷史、藝術、科學等文化價值進行分類,並指定或登錄為古蹟、歷史建築或紀念建築。其中日式木構造建築物於經指定或認證的古蹟或歷史建築物中佔有許多數量,並遍及臺灣各地區。木構造建築物保存維護時所遭遇之最大危害係為火災,因一旦遭受火災侵害往往造成嚴重毁損,加諸現行古蹟或歷史建築之修復工程以原樣保存修復為原則,並得以不受限於現行之相關防火或消防條文限制,意即缺少現代化的防火材料與消防設備保護,如此更突顯木構造歷史建築修復時考量性能式防火設計的必要性。
火載量乃進行性能式防火設計之重要參數之一,研究以日式木構造歷史建築為對象,調查使用中建築物可動火載量之分佈情形,並依據調查結果,針對國內代表性可燃物進行熱釋放率試驗,進而分析空間用途、面積與可動火載量密度之關係。全尺度火災試驗規劃以臺南木構造歷史建築的儲藏室為探討空間,依其構造方式、尺寸、可動火載量配置等實況建構試驗場景,進行全尺度火災試驗,量測火場溫度、熱釋放率、及煙感知器作動情形。
數值模擬廣為應用於火災試驗之相互驗證。為比對試驗與模擬之異同,研究更進一步以FDS數值模擬軟體,依全尺度火災試驗場景條件建立模型進行演算。全尺度火災試驗結果與數值模擬結果比較後顯示,兩者於火場發展趨勢獲得良好一致性,惟數值模擬軟體受限,無法真實反映實際火場,例如試驗過程玻璃破裂導致空氣流場變化以及可燃物倒塌受火面積減少等現象,數值模擬軟體無法進行此類大量而複雜運算,於預測火災風險、避難逃生上將致時間誤差。
With the international trend of preservation and conservation of cultural heritages, Bureau of Cultural Heritage, Ministry of Culture designates or registers tangible buildings as heritages, historical buildings or commemorative buildings based on their historical, artistic, scientific and other cultural values. Among the designated or certified heritages or historical buildings, Japanese-style wooden structures are numerous and spread throughout Taiwan. However, once the wooden structure is damaged by fire, it often causes serious loss. Furthermore, for the purpose of keeping the cultural assets as the original appearance, the restoration work for the existed heritages or historical buildings is not restricted by the relevant regulations pertaining to fire protection or fire prevention of which further highlights the necessity of fireproof design for the wooden historical buildings.
The fire load is one of the important parameters for performance-based fire protection design. This study takes the Japanese-style wooden historical building as the object for research. The investigation of the movable fire load distribution of the buildings in use was conducted, as well as the performance of the cone calorimeter experiments for the combustibles. The relationships among the surveyed room area, room use and movable fire load densities were analyzed. The results show that the fire load density increases with the decrease of room area, and the storeroom is a typical representative space. Therefore, the wooden storeroom of Tainan Patriotic Women's Hall was set as a prototype, including its structure, room size and the layout of movable fire loads, for the full-scale fire experiment.
Numerical simulation is widely used for verification for fire experiments. For the comparison of the results from experiments and simulation, the same fire scenario was modeled using FDS software to perform numerical simulation. The air temperatures, heat release rates as well as the actuation situation of smoke detectors were compared. It shows that the fire growth trends were aligned. Because of the limitation of numerical simulation software for not able to handle the mass and complex calculations to reflect the actual fire scenario in full-scale experiment, e.g., the broken windows and the decrease of fire-exposed surfaces of flammable materials along with the collapse of fire loads. The limitation of FDS simulation could possibly underestimate fire risk and evacuation time.
[1-1] Culver, C. G. Characteristics of fire loads in office buildings. Fire Technology 14 (1):51–60. doi:10.1007/BF01997261. (1978).
[1-2] Hadjisophocleous, G. and Chen, Z. A survey of fire loads in elementary schools and high schools. Journal of Fire Protection Engineering 20 (1):55–71. doi:10.1177/1042391509360266. (2010).
[1-3] Kumar, S. and Rao, C. V. S. K. Fire load in residential buildings. Building and Environment 30 (2):299–305.doi:10.1016/0360-1323(94)00043-R. (1995).
[1-4] Zalok, E., Hadjisophocleous, G. V. and Mehaffey, J. R. Fire loads in commercial premises. Fire and Materials 33(2):63–78. doi:10.1002/fam.984. (2009).
[1-5] Claret, A. M., and Andrade, A. T. Fire load survey of historic buildings: A case study. Journal of Fire Protection Engineering 17 (2):103–12. doi:10.1177/ 1042391506064912. (2007).
[1-6] Östman, B., Brandon, D. and Frantzich, H. Fire safety engineering in timber buildings. Fire Safety Journal 91:11–20. doi:10.1016/j.firesaf.2017.05.002. (2017).
[1-7] McGrattan, K. B., Hostikka, S., Floyd, J. E., Baum, H. R., and Rehm, R. G. Fire dynamics simulator (version 5), technical reference guide. Gaithersburg, Maryland: National Institute of Standards and Technology. (2007).
[1-8] Byström, A., Cheng, X., Wickström, U. and Veljkovic, M. Full-scale experimental and numerical studies on compartment fire under low ambient temperature. Building Environment 51:255-62.doi:10.1016/j.buildenv.2011.11.010 . (2012)
[1-9] Chen, C. J., Hsieh, W. D., Hu, W. C., Lai, C. M. and Lin, T. H. Experimental investigation and numerical simulation of a furnished office fire. Building Environment 45(12):2375-2742. doi:10.1016/j.buildenv.2010.06.003. (2010).
[1-10] Chow, W. K., Zou, G. W. Numerical simulation of pressure changes in closed chamber fires. BuildEnviron; 44(6):1261-75. doi:10.1016/j.buildenv.2008.09.016. (2009).
[1-11] Tzeng, C. T. and Chang, J. S., Report of project: investigation for fire loads of heritage (Project No. 971003). Ministry of Culture. R.O.C. (2009).
[1-12] Tung, S. F., Tzeng, C. T. and Su, H. C., Modelling of the charring depth of structural wooden member exposed to parametric fire. 10th International Detail Design in Architecture Conference, Istanbul Technical University, Turkey. 151-60. (2011).
[1-13] Tung, S. F., Tzeng, C. T. and Su, H. C. Comparison between the experimental and predicted charring rate of structural wood after parametric fire exposure. 13th International Detail Design in Architecture Conference, Tung Fang Design University, Kaohsiung, Taiwan (R.O.C).17-26. (2013).
[1-14] Lai, C. M., Ho, M. C. and Lin, T. H. Experimental investigations of fire spread and flashover time in office fires. Journal of Fire Sciences, 28 (3): 279-302. doi:10.1177/0734904109347165. (2009).
[1-15] Tzeng, C. T., Lai, C. M., Tung, S. F., Su, H. C., Huang, C. T., and Tsai, I. L. Report of Project: modelling the potential fire hazard of heritage and historical buildings. (Project No. MOST 101-2221-E-006-260-MY2). Ministry of Science and Technology. (2014).
[1-16] Su, H. C., Tung, S. F., Tzeng, C. T. and Lai, C. M. Survey and experimental investigation of movable fire loads in Japanese-style wooden historical buildings. International Journal of Architectural Heritage 1-12, published on line: 01 Apr. 2019. doi: 10.1080/15583058.2019.1587040. (2019).
[1-17] Tung, S. F., Su, H. C., Tzeng, C. T. and Lai, C. M. Experimental and numerical investigation of a room fire in a wooden-frame historical building. International Journal of Architectural Heritage 1-13, published on line: 05 Sep 2018. doi: 10.1080/15583058.2018.1510999. (2018).
[1-18] Lai, C. M., Tsai, M. J. and Lin. T. H. Experimental investigations of fire spread from movable to fixed fire loads in office fires. Journal of Fire Sciences 28 (6):539–59. doi:10.1177/0734904110365316. (2010).
[1-19] Chen, C. J., Hsieh, W. D., Hu, W. C., Lai, C. M. and Lin, T. H. Experimental investigation and numerical simulation of a furnished office fire. Building and Environment 45 (12):2735–42. doi:10.1016/j.buildenv.2010.06.003. (2010).
[2-1] Watts, J. M. and Kaplan, M. E. Fire risk index for historic buildings. Fire Technology 37(2): 167–180. doi.org/10.1023/A:1011649802894. (2001)
[2-2] Claret, A. M. and Andrade, A. T. Fire load survey of historic buildings: a case study. Journal of Fire Protection Engineering 17(2): 103–112. doi: 10.1177/ 1042391506064912. (2007)
[2-3] Hasemi, Y., Yasui, N., Akizuki, M., Kinoshita, K., Yamamoto, K., Yoshida, M., Tamura, Y. and Takeda, M. Fire safety performance of Japanese traditional wood/ soil walls and implications for the restoration of historic buildings in urban districts. Fire Technology 38(4): 391–402. doi:10.1023/A:1020178618608. (2002)
[2-4] Hardie, M., Green, M. and He, Y. Fire and heritage protection in Australian public housing. Journal of Cultural Heritage Management and Sustainable Development 4(2): 196–212. doi.org/10.1108/JCHMSD-08-2013-0040. (2014)
[2-5] Pickard, R. Fire safety and protection in historic buildings in England and Ireland – Part I. Structural Survey 12(2): 27–31. doi.org/10.1108/026308094100 50138. (1994)
[2-6] Pickard, R. Fire safety and protection in historic buildings in England and Ireland – Part II, Structural Survey 12(3): 8–10. doi.org/10.1108/026308094100 55692. (1994)
[2-7] Lai, C. M., Tsai, M. J. and Lin, T. H. Experimental investigation of fire Spread from movable to fixed fire loads in office fires. Journal of Fire Sciences 28(6): 539–559. doi-org.er.lib.ncku.edu.tw/10.1177/0734904110365316. (2010)
[2-8] Hadjisophocleous, G. and Chen, E. A survey of fire loads in elementary schools and high schools. Journal of Fire Protection Engineering 20(1): 55–71. doi: 10.1177/1042391509360266. (2010)
[2-9] Kumar, S. and Rao, C. Fire load in residential buildings. Building and Environment 30(2): 299-305. doi.org/10.1016/0360-1323(94)00043-R. (1995)
[2-10] Culver, C. G. Characteristics of fire loads in office buildings. Fire Technology 14(1): 51–60. doi.org/10.1007/BF01997261. (1978)
[2-11] Zalok, E., Hadjisophocleous, G. V. and Mehaffey, J. R. Fire loads in commercial premises. Fire and Materials 33(2): 63–78. doi: 10.1002/fam.984. (2009)
[2-12] Fontana, M., Kohler, J., Fischer, K. and Sanctis, D. G. Fire load density. In: SFPE handbook of fire protection engineering, ed. Hurley, M. J., Gottuk, D., Hall, J. R., Harada, K., Kuligowski, E., Puchovsky, M., Torero, J., Watts, J. M. and Wieczorek, C. 1131-42. New York: Springer New York. (2016)
[2-13] Part B: Methods of verification. 8. Fire load and fire exposure. Fire Safety Journal 6(1):24–34. doi:10.1016/0379-7112(83)90043-7. (1983).
[2-14] Zalok, E. and Eduful, J. Assessment of fuel load survey methodologies and its impact on fire load data. Fire Safety Journal 62: 299–310. Doi:10.1016/j.firesaf.2013.08.011. (2013)
[2-15] ISO 5660-1:2015. Reaction-to-fire tests — Heat release, smoke production and mass loss rate — Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement). Geneva, Switzerland: International Organization for Standardization.
[2-16] Kumar, S. and Rao, C. V. S. K. Fire loads in office buildings. Journal of Structural Engineering 123 (3):365–68. doi:10.1061/(ASCE)0733-9445. (1997).
[2-17] Parker, W. J. and Tran, H. C. Experimental data on wood materials. In Heat release in fires, ed. Babrauskas, V. and Grayson, S. J. 357–72. New York: Elsevier Applied Science. (1992).
[2-18] Khorasani, N. E., Garlock, M. and Gardoni, P. Fire load: Survey data, recent standards, and probabilistic models for office buildings. Engineering Structures 58:152–65. doi:10.1016/j.engstruct.2013.07.042. (2014).
[2-19] Liu, J. and Chow, W. K. Determination of fire load and heat release rate for high-rise residential buildings. Procedia Engineering 84: 491–497. doi: 10.1016/ j.proeng.2014.10.460. (2014)
[2-20] Caro, T. C. and Milke, J. A. A Survey of fuel loads in contemporary office buildings. NIST Report NIST-GCR-96-697, NIST, Gaithersburg, MD. (1996)
[3-1] National Fire Protection Association. Code for fire protection of historical structures NFPA 914. Quincy. MA: National Fire Protection Association. (2001).
[3-2] National Fire Protection Association. Life safety code NFPA 101. Quincy, MA: National Fire Protection Association. (2000).
[3-3] Peng, L., Hadjisophocleous, G., Mehaffey, J. and Mohammad, M. Fire resistance performance of unprotected wood-wood-wood and wood-steel-wood connections: A literature review and new data correlations. Fire Safety Journal 45:392-99. doi:10.1016/j.firesaf.2010.08.003. (2010).
[3-4] Schmid, J., Klippel, M., Just, A. and Frangi, A. Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the Reduced Cross-Section Method. Fire Safety Journal 68:81-99. doi: 10.1016/j.firesaf.2014.05.006. (2014).
[3-5] Kolaitis, D. I., Asimakopoulou, E. K. and Founti, M. A. Fire protection of light and massive timber elements using gypsum plasterboards and wood based panels: A large-scale compartment fire test. Construction and Building Materials 73:163-70. doi: 10.1016/j.conbuildmat.2014.09.027. (2014).
[3-6] Regueira, R. and Guaita, M. Numerical simulation of the fire behavior of timber dovetail connections. Fire Safety Journal 96:1-12. doi: 10.1016/j.firesaf. 2017.12.005. (2018).
[3-7] Emberley, R., Putynska, C.G., Bolanos, A., Lucherini, A., Solarte, A., Soriguer, D., Gonzalez, M. G., Humphreys, K., Hidalgo, J. P., Maluk, C., Law, A. and Torero, J. L. Description of small and large-scale cross laminated timber fire tests. Fire Safety Journal 91:327-35. doi: 10.1016/j-firesaf.2017.03.024. (2017).
[3-8] Bartlett, A. I., R. M. Hadden, J. P. Hidalgo, S. Santamaria, F. Wiesner, L. A. Bisby, S. Deeny, and B. Lane. Auto-extinction of engineered timber: Application to compartment fires with exposed timber surfaces. Fire Safety Journal 91: 407-13. doi:10.1016/j. firesafe.2017.03.050. (2017).
[3-9] Zelinka, S. L., Hasburgh, L. E., Bourne, K. J., Tucholski, D. R. and Ouellette, J. P. Compartment fire testing of a two-story mass timber building. General Technical Report FPL-GTR-247. Madison, WI. U.S. Department of Agricultural, Forest Service, Forest Products Laboratory. (2018).
[3-10] Claret, A. M. and Andrade, A. T. Fire load survey of historic buildings: A case study. Journal of Fire Protection Engineering 17 (2):103-12. doi: 10.1177/1042391506064912. (2007).
[3-11] Chen, C. J., Hsieh, W. D., Hu, W. C., Lai, C. M. and Lin, T. H. Experimental investigation and numerical simulation of a furnished office fire. Building and Environment 45 (12): 2735-42. doi:10.1016/j.buildenv.2010.06.003. (2010).
[4-1] Östman, B., Brandon, D. and Frantzich, H. Fire safety engineering in timber buildings. Fire Safety Journal 91:11-20. doi:10.1016/j.firesaf.2017.05.002. (2017).
[4-2] McGrattan, K. B., Hostikka, S., Floyd, J. E., Baum, H. R. and Rehm, R. G. Fire dynamics simulator (version 5), technical reference guide. Gaithersburg, Maryland: National Institute of Standards and Technology. (2007).
[4-3] Byström, A., Cheng, X., Wickström, U. and Veljkovic, M. Full-scale experimental and numerical studies on compartment fire under low ambient temperature. Building and Environment 51 (C):255-62. doi:10.1016/j.buildenv. 2011.11.010. (2012).
[4-4] Chow, W. K. and Zou, G. W. Numerical simulation of pressure changes in closed chamber fires. Building and Environment 44 (6):1261-75. doi:10.1016/ j.buildenv.2008.09.016. (2009).
[4-5] Rein, G., Torero, J. L., Jahn, W., Stern-Gottfried, J., Ryder, N. L., Desanghere, S., Lazaro, M., Mowrer, F., Coles, A., Joyeux, D., Alvear, D., Capote, J. A., Jowsey, A. Abecassis-Empis, C. and Reszka, P. Round-robin study of a priori modelling predictions of the Dalmarnock Fire Test One. Fire Safety Journal 44 (4):590-602. doi:10.1016/j.firesaf.2008.12.008. (2009).
[4-6] Wen, J. X., Kang, K., Donchev, T. and Karwatzki, J. M. Validation of FDS for the prediction of medium-scale pool fires. Fire Safety Journal 42 (2):127-38. doi:10.1016/j.firesaf.2006.08.007. (2007).
[4-7] Fontana, M., Kohler, J., Fischer, K. and Sanctis, D. G. Fire load density. In: SFPE handbook of fire protection engineering, ed. Hurley, M. J., Gottuk, D., Hall, J. R., Harada, K., Kuligowski, E., Puchovsky, M., Torero, J., Watts, J. M. and Wieczorek, C. 1131-42. New York: Springer New York. (2016)
[4-8] Yang, P., Tan, X. and Xin, W. Experimental study and numerical simulation for a storehouse fire accident. Building and Environment 46 (7):1445-59. doi:10.1016/j.buildenv.2011.01.012. (2011).
[4-9] Chen, C. J., Hsieh, W. D. Hu, W. C., Lai, C. M. and Lin, T. H. Experimental investigation and numerical simulation of a furnished office fire. Building and Environment 45 (12): 2735-42. doi:10.1016/j.buildenv.2010.06.003. (2010).