研究生: |
許芳瑜 Hsu, Fang-Yu |
---|---|
論文名稱: |
穩定且可調控輸出波長之有機混合鹵素鈣鈦礦薄膜 Stable and Tunable Output Wavelength Organic Mixed Halide Perovskite Thin Film |
指導教授: |
周昱薰
Chou, Yu-Hsun |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 有機混合鹵素鈣鈦礦 、離子遷移 、電控 、可調變波長 、絕緣層 、雷射增益介質 |
外文關鍵詞: | Organic mixed halide perovskite(MHP), ion migration, electrical control, tunable wavelength, insulating layer, laser gain medium |
相關次數: | 點閱:84 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面臨能源發展危機,開發新一代高效、且可持續利用的能源一直是重要議題之一;然而,近年來混合鹵素鈣鈦礦材料因具有高的光電轉換效率,以及各種優異的光學特性,在應用端以及學術界中引起了廣泛的關注,並被視為是潛在的解決方案之一。
本論文嘗試透過改變鈣鈦礦中相異鹵素比例來實現材料帶隙的主動可調控性,並結合疏水性絕緣層以提升材料於大氣環境下的穩定性,嘗試實現一種光譜範圍寬、波長可調控、且穩定性高的材料。實驗中,透過不同間距( 50 μm、400 μm )的金屬電極於材料之上,成功使材料的輸出波長隨偏壓提升而有藍移的現象;另外,透過添加聚苯乙烯(Polystyrene, PS)作為保護層,也成功使材料在大氣環境下維持良好的光學特性以及離子遷移現象達3三天以上。儘管將PS覆蓋於金屬電極之上時,並無隨偏壓增加產生波峰偏移之現象,本研究仍成功利用主動電控方式來調變有機混合鹵素鈣鈦礦的輸出波長,並且經過絕緣層的添加提升材料的穩定性。
由結果證明,未來可以嘗試將利用偏壓調整結合,並應用於雷射元件中的增益介質,達到一個能長期穩定使用,並可透過電控使其擁有多個輸出波長的雷射元件結構;也期望透過鈣鈦礦材料的簡易製程、高轉換效率特性,結合低成本的製程手法,改善傳統半導體產業中磊晶製程所不可避免的傳統能源消耗,發展新一代的能源,也期望此材料在未來於光電領域中能有更多元、且永續的發展。
In recent years, the development of efficient and sustainable energy sources stands as an important issue in today's world. Due to the remarkable photon-to-electron conversion efficiency (IPCE) and a range of exceptional optical properties, Mixed Halide Perovskite (MHP) have garnered extensive attention both in practical application and the academic fields, positioning MHP as a potential solution.
Our research dedicates to achieve the active tunability of the material band gap within MHP by altering the ratio of two different of halides and applying a bias. Furthermore, we integrate the hydrophobic insulating layer (Polystyrene, PS) with MHP to enhance material stability in normal environment conditions. Then, we measure MHP through PL spectrum under the continuous-wave laser. We successfully enhance material stability in normal environment conditions for more than 3 days, and control the wavelength through the applying bias.
This result shows that the material properties of perovskite, including reusability and high efficiency when combined with a low-cost manufacturing process, have the potential to address the substantial energy consumption issues prevalent in traditional laser component fabrication.
[1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, no. 17, pp. 6050-6051, 2009.
[2] J. H. Heo et al., "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors," Nature photonics, vol. 7, no. 6, pp. 486-491, 2013.
[3] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[4] E. A. R. Assirey, "Perovskite synthesis, properties and their related biochemical and industrial application," Saudi Pharmaceutical Journal, vol. 27, no. 6, pp. 817-829, 2019.
[5] Q. Dong et al., "Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals," Science, vol. 347, no. 6225, pp. 967-970, 2015.
[6] S. D. Stranks et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, no. 6156, pp. 341-344, 2013.
[7] Y. Wang et al., "Hybrid graphene–perovskite phototransistors with ultrahigh responsivity and gain," Advanced Optical Materials, vol. 3, no. 10, pp. 1389-1396, 2015.
[8] H. J. Snaith, "Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells," The journal of physical chemistry letters, vol. 4, no. 21, pp. 3623-3630, 2013.
[9] Z.-K. Tan et al., "Bright light-emitting diodes based on organometal halide perovskite," Nature nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
[10] X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, "Lead iodide perovskite light-emitting field-effect transistor," Nature communications, vol. 6, no. 1, p. 7383, 2015.
[11] H. Zhu et al., "Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors," Nature materials, vol. 14, no. 6, pp. 636-642, 2015.
[12] E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, and M. D. McGehee, "Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics," Chemical Science, 10.1039/C4SC03141E vol. 6, no. 1, pp. 613-617, 2015, doi: 10.1039/C4SC03141E.
[13] M. C. Brennan, S. Draguta, P. V. Kamat, and M. Kuno, "Light-Induced Anion Phase Segregation in Mixed Halide Perovskites," ACS Energy Letters, vol. 3, no. 1, pp. 204-213, 2018/01/12 2018, doi: 10.1021/acsenergylett.7b01151.
[14] H. Zhang et al., "Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals," Nature Communications, vol. 10, no. 1, p. 1088, 2019/03/06 2019, doi: 10.1038/s41467-019-09047-7.
[15] H. Zhang et al., "Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells," Nano Energy, vol. 43, pp. 383-392, 2018.
[16] T. Numai and T. Numai, Fundamentals of semiconductor lasers. Springer, 2015.
[17] I. Karomi, "Design and analysis of quantum dot laser (InAsP) for bio-photonic and mode-locking applications," Cardiff University, 2018.
[18] J. P. Attfield, P. Lightfoot, and R. E. Morris, "Perovskites," Dalton Transactions, 10.1039/C5DT90083B vol. 44, no. 23, pp. 10541-10542, 2015, doi: 10.1039/C5DT90083B.
[19] Y. Chen, L. Zhang, Y. Zhang, H. Gao, and H. Yan, "Large-area perovskite solar cells–a review of recent progress and issues," RSC advances, vol. 8, no. 19, pp. 10489-10508, 2018.
[20] N. Calisi, E. Galvanetto, F. Borgioli, S. M. Martinuzzi, T. Bacci, and S. Caporali, "Thin films deposition of fully inorganic metal halide perovskites: A review," Materials Science in Semiconductor Processing, vol. 147, p. 106721, 2022.
[21] S. C. Tidrow, "Mapping comparison of Goldschmidt's tolerance factor with Perovskite structural conditions," Ferroelectrics, vol. 470, no. 1, pp. 13-27, 2014.
[22] L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, and E. H. Sargent, "Perovskites for next-generation optical sources," Chemical reviews, vol. 119, no. 12, pp. 7444-7477, 2019.
[23] C. Zhou et al., "Low dimensional metal halide perovskites and hybrids," Materials Science and Engineering: R: Reports, vol. 137, pp. 38-65, 2019.
[24] T. Soto-Montero, W. Soltanpoor, and M. Morales-Masis, "Pressing challenges of halide perovskite thin film growth," APL materials, vol. 8, no. 11, p. 110903, 2020.
[25] I. Borriello, G. Cantele, and D. Ninno, "Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides," Physical Review B, vol. 77, no. 23, p. 235214, 2008.
[26] S. Yakunin et al., "Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites," Nature communications, vol. 6, no. 1, p. 8056, 2015.
[27] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells," Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013.
[28] Q. Zhang et al., "Advances in small perovskite‐based lasers," Small Methods, vol. 1, no. 9, p. 1700163, 2017.
[29] E. M. Hutter et al., "Direct–indirect character of the bandgap in methylammonium lead iodide perovskite," Nature materials, vol. 16, no. 1, pp. 115-120, 2017.
[30] K. Hong, Q. Van Le, S. Y. Kim, and H. W. Jang, "Low-dimensional halide perovskites: review and issues," Journal of Materials Chemistry C, vol. 6, no. 9, pp. 2189-2209, 2018.
[31] Y. Fang and J. Huang, "Resolving weak light of sub‐picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction," Advanced Materials, vol. 27, no. 17, pp. 2804-2810, 2015.
[32] J. Choi et al., "Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius," ACS applied materials & interfaces, vol. 9, no. 36, pp. 30764-30771, 2017.
[33] P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, "Organic–inorganic hybrid perovskite nanowire laser arrays," ACS nano, vol. 11, no. 6, pp. 5766-5773, 2017.
[34] Y. Fu et al., "Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I)," ACS nano, vol. 10, no. 8, pp. 7963-7972, 2016.
[35] J. Choi et al., "Organolead halide perovskites for low operating voltage multilevel resistive switching," Advanced Materials, vol. 28, no. 31, pp. 6562-6567, 2016.
[36] R. G. Larson and T. J. Rehg, "Spin coating," Liquid Film Coating: Scientific principles and their technological implications, pp. 709-734, 1997.
[37] M. Kulbak, D. Cahen, and G. Hodes, "How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells," The journal of physical chemistry letters, vol. 6, no. 13, pp. 2452-2456, 2015.
[38] J. C. Costa, J. o. Azevedo, L. M. Santos, and A. l. Mendes, "On the deposition of lead halide perovskite precursors by physical vapor method," The Journal of Physical Chemistry C, vol. 121, no. 4, pp. 2080-2087, 2017.
[39] A. M. Igual-Muñoz, J. Navarro-Alapont, C. Dreessen, F. Palazon, M. Sessolo, and H. J. Bolink, "Room-temperature vacuum deposition of CsPbI2Br perovskite films from multiple sources and mixed halide precursors," Chemistry of Materials, vol. 32, no. 19, pp. 8641-8652, 2020.
[40] J. C. Costa, J. Azevedo, J. P. Araújo, L. M. Santos, and A. Mendes, "High purity and crystalline thin films of methylammonium lead iodide perovskites by a vapor deposition approach," Thin Solid Films, vol. 664, pp. 12-18, 2018.
[41] J. A. Raiford, S. T. Oyakhire, and S. F. Bent, "Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells," Energy & Environmental Science, 10.1039/D0EE00385A vol. 13, no. 7, pp. 1997-2023, 2020, doi: 10.1039/D0EE00385A.
[42] D. Bi et al., "Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%," Nature Energy, vol. 1, no. 10, pp. 1-5, 2016.
[43] H. Zhou et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, no. 6196, pp. 542-546, 2014.
[44] D. Bi et al., "Efficient luminescent solar cells based on tailored mixed-cation perovskites," Science advances, vol. 2, no. 1, p. e1501170, 2016.
[45] J. Y. Jeng et al., "CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells," Advanced Materials, vol. 25, no. 27, pp. 3727-3732, 2013.
[46] Q. Chen et al., "Planar heterojunction perovskite solar cells via vapor-assisted solution process," Journal of the American Chemical Society, vol. 136, no. 2, pp. 622-625, 2014.
[47] Z. Xiong et al., "Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%," Advanced Materials, vol. 34, no. 8, p. 2106118, 2022.
[48] M. Kim et al., "Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells," Science, vol. 375, no. 6578, pp. 302-306, 2022.
[49] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, vol. 338, no. 6107, pp. 643-647, 2012.
[50] J. P. Mailoa et al., "A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction," Applied Physics Letters, vol. 106, no. 12, p. 121105, 2015.
[51] E. Köhnen et al., "Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance," Sustainable Energy & Fuels, vol. 3, no. 8, pp. 1995-2005, 2019.
[52] J. Werner, B. Niesen, and C. Ballif, "Perovskite/silicon tandem solar cells: marriage of convenience or true love story?–An overview," Advanced Materials Interfaces, vol. 5, no. 1, p. 1700731, 2018.
[53] M. I. Hossain, W. Qarony, S. Ma, L. Zeng, D. Knipp, and Y. H. Tsang, "Perovskite/silicon tandem solar cells: From detailed balance limit calculations to photon management," Nano-micro letters, vol. 11, pp. 1-24, 2019.
[54] A. S. Subbiah et al., "High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating," ACS Energy Letters, vol. 5, no. 9, pp. 3034-3040, 2020.
[55] A. Al-Ashouri et al., "Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction," Science, vol. 370, no. 6522, pp. 1300-1309, 2020.
[56] K. Lin et al., "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, vol. 562, no. 7726, pp. 245-248, 2018.
[57] M. Yuan et al., "Perovskite energy funnels for efficient light-emitting diodes," Nature nanotechnology, vol. 11, no. 10, pp. 872-877, 2016.
[58] Z. Xiao et al., "Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites," Nature Photonics, vol. 11, no. 2, pp. 108-115, 2017.
[59] L. Zhang et al., "Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes," Nature communications, vol. 8, no. 1, p. 15640, 2017.
[60] N. Wang et al., "Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells," Nature Photonics, vol. 10, no. 11, pp. 699-704, 2016.
[61] Q. Van Le, H. W. Jang, and S. Y. Kim, "Recent advances toward high‐efficiency halide perovskite light‐emitting diodes: review and perspective," Small Methods, vol. 2, no. 10, p. 1700419, 2018.
[62] W. Xu et al., "Rational molecular passivation for high-performance perovskite light-emitting diodes," Nature Photonics, vol. 13, no. 6, pp. 418-424, 2019.
[63] K. Zhang, N. Zhu, M. Zhang, L. Wang, and J. Xing, "Opportunities and challenges in perovskite LED commercialization," Journal of Materials Chemistry C, vol. 9, no. 11, pp. 3795-3799, 2021.
[64] S. Hou, M. K. Gangishetty, Q. Quan, and D. N. Congreve, "Efficient blue and white perovskite light-emitting diodes via manganese doping," Joule, vol. 2, no. 11, pp. 2421-2433, 2018.
[65] M. H. Kumar et al., "Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells," Chemical Communications, vol. 49, no. 94, pp. 11089-11091, 2013.
[66] D. Yang, R. Yang, S. Priya, and S. Liu, "Recent advances in flexible perovskite solar cells: fabrication and applications," Angewandte Chemie International Edition, vol. 58, no. 14, pp. 4466-4483, 2019.
[67] X. Liang et al., "Flexible perovskite solar cells: Progress and Prospects," Frontiers in Materials, vol. 8, p. 634353, 2021.
[68] P. Jia et al., "Recent Advances in Flexible Perovskite Light‐Emitting Diodes," Advanced Materials Interfaces, vol. 8, no. 17, p. 2100441, 2021.
[69] J. H. Jang, S. Li, D. H. Kim, J. Yang, and M. K. Choi, "Materials, Device Structures, and Applications of Flexible Perovskite Light‐Emitting Diodes," Advanced Electronic Materials, p. 2201271, 2023.
[70] M. Lu et al., "Highly flexible CsPbI3 perovskite nanocrystal light‐emitting diodes," ChemNanoMat, vol. 5, no. 3, pp. 313-317, 2019.
[71] C. Bao et al., "Low‐noise and large‐linear‐dynamic‐range photodetectors based on hybrid‐perovskite thin‐single‐crystals," Advanced Materials, vol. 29, no. 39, p. 1703209, 2017.
[72] Y. Zhao, C. Li, and L. Shen, "Recent research process on perovskite photodetectors: a review for photodetector—materials, physics, and applications," Chinese Physics B, vol. 27, no. 12, p. 127806, 2018.
[73] T. Kondo, T. Azuma, T. Yuasa, and R. Ito, "Biexciton lasing in the layered perovskite-type material (C6H13NH3) 2PbI4," Solid state communications, vol. 105, no. 4, pp. 253-255, 1998.
[74] G. Xing et al., "Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nature materials, vol. 13, no. 5, pp. 476-480, 2014.
[75] F. Deschler et al., "High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors," The journal of physical chemistry letters, vol. 5, no. 8, pp. 1421-1426, 2014.
[76] H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, "Materials chemistry and engineering in metal halide perovskite lasers," Chemical Society Reviews, vol. 49, no. 3, pp. 951-982, 2020.
[77] Y. Fu et al., "Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability," Nano letters, vol. 16, no. 2, pp. 1000-1008, 2016.
[78] L. Huang et al., "Composition‐Graded Cesium Lead Halide Perovskite Nanowires with Tunable Dual‐Color Lasing Performance," Advanced Materials, vol. 30, no. 27, p. 1800596, 2018.
[79] S. Liu et al., "Tailoring the lasing modes in CH 3 NH 3 PbBr 3 perovskite microplates via micro-manipulation," RSC Advances, vol. 6, no. 56, pp. 50553-50558, 2016.
[80] Q. Zhang, Q. Shang, R. Su, T. T. H. Do, and Q. Xiong, "Halide perovskite semiconductor lasers: materials, cavity design, and low threshold," Nano Letters, vol. 21, no. 5, pp. 1903-1914, 2021.
[81] A. Vassilakopoulou, D. Papadatos, and I. Koutselas, "Polystyrene based perovskite light emitting diode," Applied Materials Today, vol. 12, pp. 15-20, 2018.
[82] M. C. Brennan, A. Ruth, P. V. Kamat, and M. Kuno, "Photoinduced Anion Segregation in Mixed Halide Perovskites," Trends in Chemistry, vol. 2, no. 4, pp. 282-301, 2020/04/01/ 2020, doi: 10.1016/j.trechm.2020.01.010.
[83] Z. Wang, Y. Wang, Z. Nie, Y. Ren, and H. Zeng, "Laser induced ion migration in all-inorganic mixed halide perovskite micro-platelets," Nanoscale Adv., 10.1039/C9NA00565J vol. 1, no. 11, pp. 4459-4465, 2019, doi: 10.1039/C9NA00565J.
[84] J. Epp, "X-ray diffraction (XRD) techniques for materials characterization," in Materials characterization using nondestructive evaluation (NDE) methods: Elsevier, 2016, pp. 81-124.
[85] K. Akhtar, S. A. Khan, S. B. Khan, and A. M. Asiri, "Scanning electron microscopy: Principle and applications in nanomaterials characterization," Handbook of materials characterization, pp. 113-145, 2018.
[86] M. Kannan, "Scanning electron microscopy: Principle, components and applications," A Textbook on Fundamentals and Applications of Nanotechnology; Springer: Berlin/Heidelberg, Germany, pp. 81-92, 2018.
[87] J. Tom, "UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications Article Published: June 30, 2021."
[88] C.-M. Hsieh, Y.-L. Yu, C.-P. Chen, and S.-C. Chuang, "Effects of the additives n-propylammonium or n-butylammonium iodide on the performance of perovskite solar cells," RSC advances, vol. 7, no. 88, pp. 55986-55992, 2017.
[89] M. Roy, Vikram, Bhawna, U. Dedhia, A. Alam, and M. Aslam, "Spontaneous ion migration via mechanochemical ultrasonication in mixed halide perovskite phase formation: Experimental and theoretical insights," The Journal of Physical Chemistry Letters, vol. 12, no. 4, pp. 1189-1194, 2021.
[90] A. A. Khan, Z. Yu, U. Khan, Y. Li, and D. Eric, "Solution-processed photodetector based on Br incorporated perovskite materials," in AOPC 2019: Nanophotonics, 2019, vol. 11336: SPIE, pp. 104-111.