| 研究生: |
簡彩綸 Chien, Tsai-Lun |
|---|---|
| 論文名稱: |
解構綠色衝突下太陽光電系統之跨域規劃—以臺南市為例 Reconstructing the Cross-boundary Planning of Solar Energy System under the Green Conflict: Taking Tainan City as an Example |
| 指導教授: |
張學聖
Chang, Hsueh-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 綠色衝突 、環境效率 |
| 外文關鍵詞: | Green Conflict, Environmental Efficiency |
| 相關次數: | 點閱:103 下載:31 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伴隨氣候變遷的衝擊,威脅經濟、社會與環境系統,全球面臨淨零排放的趨勢,產生能源轉型的挑戰,期望透過再生能源的發展,降低溫室氣體的排放,減緩氣候變遷的影響。因應臺灣的環境特色,現今再生能源的發展主力之一為光電系統,一般分為地面型、屋頂型與建築整合型光電系統,其中以地面型最為普遍,但在光電區位的規劃上,考量土地利用現況或土地取得成本,光電系統容易配置在經濟價值較低,但是社會或環境價值較高的土地上,如農地或溼地,衝擊農地、溼地等生產、生態環境。此種供給導向的規劃模式,缺乏系統性的整體考量,使得再生能源開發與環境資源保護的角力,產生光電發展的綠色衝突。
由於臺灣國土面積狹小,然而光電發展需要大量土地,同時土地使用具有多元價值,如何提升土地使用效率,並在價值之間進行權衡達成公平,為光電發展如何與環境、社會共生的重要課題。因此,本研究期望解構過往光電系統的規劃模式,因應綠色衝突同時考量光電發展的經濟條件與社會、環境限制,提供跨域思考之光電用地的規劃準則,並根據目標導向或價值導向的不同情境探討效益與成本,最後經由資料包絡分析進行整合,計算光電發展的環境效率。區位評估與情境探討的成果,得以反思光電發展的目標設定與價值權衡,使得未來國土空間中光電用地的規劃,能融合環境效率的思維,進而實現淨零排放下的環境永續。
With the impact of climate change threatening the economic, social and environmental systems, the world is facing the trend of net-zero emissions, creating the challenge of energy transformation. Due to the environmental characteristics of Taiwan, one of the main forces in the development of renewable energy is the solar photovoltaic system. However, in the planning of solar photovoltaic systems location, considering the current land use and cost of acquiring land, solar photovoltaic systems are easily deployed on land with lower economic value but higher social or environmental value, such as agricultural land or wetlands, which will impact the production environment and ecological environment of agricultural land and wetlands. This supply-oriented planning model lacks systematic overall consideration, which makes the tug-of-war between the development of renewable energy and the protection of environmental resources, resulting in a green conflict in the development of solar photovoltaic systems.
Since Taiwan is a small country, the development of solar photovoltaic systems requires a large amount of land, and land use has multiple values, how to improve the efficiency of land use and balance the values to achieve fairness is an important issue. Therefore, this study aims to deconstruct the previous planning model, to address the green conflict, and to provide cross-disciplinary planning criteria by taking into account the economic conditions and the social and environmental constraints, and to explore the benefits and costs according to the goal-oriented or value-oriented scenarios, and finally to calculate the environmental efficiency by integrating them with the data envelopment analysis. The results of location assessment and scenario exploration enable us to reflect on the goal setting and value trade-offs of solar photovoltaic systems development, so that the future planning of it in the national territory can incorporate the concept of environmental efficiency, and thus realizes environmental sustainability.
中文文獻
中央研究院(2022)。臺灣淨零科技研發政策建議書。
王筱雯、趙子元、連威迪、董安龍、林雨柔(2022)。臺灣光電轉型「最小衝突」戰略:情境與土地規模等地選址模式。地理學報,103,65-84。
行政院原子能委員會核能研究所(2018)。再生能源需要大量土地面積,臺灣是否適合發展再生能源?。
行政院國家永續發展委員會(2022)。臺灣 2050 淨零排放路徑及策略總說明。
行政院經濟部能源署(2022)。臺灣電力系統概論。
行政院內政部(2023)。非都市土地使用管制規則第六條附表一修正總說明。
行政院內政部國土管理署(2023)。國土計畫納入綠能發展區,引導土地合理使用。
行政院國家發展委員會(2023)。臺灣 2050 淨零轉型「風電/光電」關鍵戰略行動計畫。
行政院經濟部(2023)。風頭水尾低地力,即使設綠能發展區也不離農。
行政院經濟部(2024)。公告「能源用地白皮書(光電篇)1.0」。
行政院經濟部能源署(2023)。電力排碳係數。
行政院經濟部能源署臺灣電力公司(2023)。再生能源。
林祥偉(1998)。多準則決策技術與地理資訊系統整合之研究。國立臺灣大學地理學系地理學報,24。
臺灣太陽光電產業協會(2023)。光電系統設置類型。
外文文獻
Armstrong, A., Waldron, S., Whitaker, J., & Ostle, N. J. (2014). Wind farm and solar park effects on plant–soil carbon cycling: uncertain impacts of changes in ground‐level microclimate. Global change biology, 20(6), 1699-1706.
Armstrong, A., Ostle, N. J., & Whitaker, J. (2016). Solar park microclimate and vegetation management effects on grassland carbon cycling. Environmental Research Letters, 11(7), 074016.
Al Garni, H. Z., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied energy, 206, 1225-1240.
Almasad, A., Pavlak, G., Alquthami, T., & Kumara, S. (2023). Site suitability analysis for implementing solar PV power plants using GIS and fuzzy MCDM based approach. Solar Energy, 249, 642-650.
Brewer, J., Ames, D. P., Solan, D., Lee, R., & Carlisle, J. (2015). Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability. Renewable energy, 81, 825-836.
Choi, C. S., Cagle, A. E., Macknick, J., Bloom, D. E., Caplan, J. S., & Ravi, S. (2020). Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure. Frontiers in Environmental Science, 8, 140.
Chock, R. Y., Clucas, B., Peterson, E. K., Blackwell, B. F., Blumstein, D. T., Church, K., ... & Toni, P. (2021). Evaluating potential effects of solar power facilities on wildlife from an animal behavior perspective. Conservation Science and Practice, 3(2), e319.
Doljak, D., & Stanojević, G. (2017). Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia. Energy, 127, 291-300.
Doorga, J. R., Rughooputh, S. D., & Boojhawon, R. (2019). Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renewable energy, 133, 1201-1219.
Elboshy, B., Alwetaishi, M., Aly, R. M., & Zalhaf, A. S. (2022). A suitability mapping for the PV solar farms in Egypt based on GIS-AHP to optimize multi-criteria feasibility. Ain Shams Engineering Journal, 13(3), 101618.
Fthenakis, V., & Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13(6-7), 1465-1474.
Günen, M. A. (2021). A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey. Renewable Energy, 178, 212-225.
Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., ... & Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and sustainable energy reviews, 29, 766-779.
Habib, S. M., Suliman, A. E. R. E., Al Nahry, A. H., & Abd El Rahman, E. N. (2020). Spatial modeling for the optimum site selection of solar photovoltaics power plant in the northwest coast of Egypt. Remote Sensing Applications: Society and Environment, 18, 100313.
Hassaan, M. A., Hassan, A., & Al-Dashti, H. (2021). GIS-based suitability analysis for siting solar power plants in Kuwait. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 453-461.
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
IRENA. (2023). Renewable energy statistics 2023, International Renewable Energy Agency, Abu Dhabi.
Jbaihi, O., Ouchani, F. Z., Merrouni, A. A., Cherkaoui, M., Ghennioui, A., & Maaroufi, M. (2022). An AHP-GIS based site suitability analysis for integrating large-scale hybrid CSP+ PV plants in Morocco: An approach to address the intermittency of solar energy. Journal of Cleaner Production, 369, 133250.
Lee, A. H., Kang, H. Y., Lin, C. Y., & Shen, K. C. (2015). An integrated decision-making model for the location of a PV solar plant. Sustainability, 7(10), 13522-13541.
Lambert, Q., Bischoff, A., Cueff, S., Cluchier, A., & Gros, R. (2021). Effects of solar park construction and solar panels on soil quality, microclimate, CO2 effluxes, and vegetation under a Mediterranean climate. Land Degradation & Development, 32(18), 5190-5202.
Mejia, F. A., & Kleissl, J. (2013). Soiling losses for solar photovoltaic systems in California. Solar Energy, 95, 357-363.
McGhee, R., & Svehla, K. (2020). Opportunity mapping for urban scale renewable energy generation. Renewable Energy, 162, 779-787.
Mokarram, M., Mokarram, M. J., Khosravi, M. R., Saber, A., & Rahideh, A. (2020). Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory. Scientific Reports, 10(1), 8200.
Noorollahi, Y., Senani, A. G., Fadaei, A., Simaee, M., & Moltames, R. (2022). A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach. Renewable Energy, 186, 89-104.
Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A. (2015). Effects of various parameters on PV-module power and efficiency. Energy Conversion and Management, 103, 348-358.
Rahnama, E., Aghbashlo, M., Tabatabaei, M., Khanali, M., & Rosen, M. A. (2019). Spatio-temporal solar exergoeconomic and exergoenvironmental maps for photovoltaic systems. Energy Conversion and Management, 195, 701-711.
Ruiz, H. S., Sunarso, A., Ibrahim-Bathis, K., Murti, S. A., & Budiarto, I. (2020). GIS-AHP Multi Criteria Decision Analysis for the optimal location of solar energy plants at Indonesia. Energy Reports, 6, 3249-3263.
Sedjo, R. A. (1989). Forests to offset the greenhouse effect. Journal of Forestry;(USA), 87(7).
Sarver, T., Al-Qaraghuli, A., & Kazmerski, L. L. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and sustainable energy Reviews, 22, 698-733.
Sayyah, A., Horenstein, M. N., & Mazumder, M. K. (2014). Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy, 107, 576-604.
Shriki, N., Rabinovici, R., Yahav, K., & Rubin, O. (2023). Prioritizing suitable locations for national-scale solar PV installations: Israel's site suitability analysis as a case study. Renewable Energy, 205, 105-124.
Tahri, M., Hakdaoui, M., & Maanan, M. (2015). The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco. Renewable and sustainable energy reviews, 51, 1354-1362.
Uyan, M. (2017). Optimal site selection for solar power plants using multi-criteria evaluation: a case study from the Ayranci region in Karaman, Turkey. Clean Technologies and Environmental Policy, 19, 2231-2244.
Walston Jr, L. J., Rollins, K. E., LaGory, K. E., Smith, K. P., & Meyers, S. A. (2016). A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renewable Energy, 92, 405-414.
Wang, C. N., Dang, T. T., & Wang, J. W. (2022). A combined Data Envelopment Analysis (DEA) and Grey Based Multiple Criteria Decision Making (G-MCDM) for solar PV power plants site selection: A case study in Vietnam. Energy Reports, 8, 1124-1142.