簡易檢索 / 詳目顯示

研究生: 李琦峰
Lee, Chi-Feng
論文名稱: 超順磁奈米粒子的表面電荷於DNA分離上的應用與α-Fe2O3奈米粒子之製備
Application of surface-charge for Superparamagentic nanoparticles in the isolation of DNA and Synthesis of α-Fe2O3 nanoparticles
指導教授: 葉晨聖
Yeh, Chen-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 68
中文關鍵詞: 超順磁氧化鐵奈米
外文關鍵詞: Superparamagentic, DNA, nanoparticle
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   論文是有關於超順磁奈米粒子(Fe3O4)之表面電荷於DNA分離的應用與α-Fe2O3奈米粒子之製備研究。前者主要是改變奈米粒子的表面電荷,使得DNA能在粒子表面進行吸附與脫附。利用此方式,或許Fe3O4奈米粒子可以在分離DNA方面成為一新式的奈米吸附劑。在後者的研究中,利用一簡單快速的方式合成出α-Fe2O3奈米粒子。將對其製備之情況與產物的特性進行探討。
      Fe3O4奈米粒子的製備是利用共沉澱的方式,將四級胺塩溶液加入含有Fe2+ 與Fe3+ 離子溶液中而得到。利用酸化的方式,將保護基去除而外露出表面之氫氧基。故藉由改變溶液中的pH值來控制粒子的表面電荷。此方式能讓DNA吸附在粒子表面,容易從溶液中分離出來。改變不同比例的DNA與Fe3O4奈米粒子,討論粒子與吸附量的關係。其結果可以藉由TEM、UV-Vis、電泳與表面電荷分析來鑑定。
      在製備α-Fe2O3奈米粒子方面,利用尿素在90OC的溫度下會分解成胺基,進而提供鹼性氫氧基。此情形會將Fe2+ 離子轉變成α-Fe2O3奈米粒子。在相同製備條件下對不同溫度以及尿素的用量對實驗影響作探討。

     The dissertation concerns about two part :one is the applications of surface-charge for superparamagentic nanoparticle in the isolation of DNA and another is synthesis of α-Fe2O3 nanoparticle. In the former, DNA can be absorbed and departed from the Fe3O4 nanoparticle surface via changing the surface charge of nanoparticle. In this way, the Fe3O4 nanoparticle is perhaps to be a novel nano-adsorbemt in separating DNA. In the latter, the Fe2O3 nanoparticle was synthesized by a simple and fast method. The preparation conditions and product properties of the Fe2O3 nanoparticle were investigated.
     The Fe3O4 nanoparticles were prepared by co-precipitating Fe2+ and Fe3+ ion in an ammonia solution. The Fe3O4 nanoparticles was exposed the oxyhydrogen group by using a acid way to get rid of the surface protection group. So the surface charge can be control via changing the pH value of solution. By this way, DNA can be easy to isolate from solution. We Change the DNA and Fe3O4 nanoparticles of different proportions to find the DNA absorbing amount of nanoparticle. The result can be identified by TEM, UV-Vis, electrophoresis and zeta potential.
     To prepare the α-Fe2O3 nanoparticle, we use the urea to provide base because it will decompose at 90OC. The process is Fe2+ ion to form α-Fe2O3 nanoparticle. We will discuss that different reaction temperature and the amount of urea to effect the production of α-Fe2O3 nanoparticle.under the same codition of reaction.

    目錄 目錄........................................................Ⅰ 表目錄......................................................Ⅳ 圖目錄......................................................Ⅴ 中文摘要....................................................Ⅷ 英文摘要....................................................Ⅸ 第一章 緒論.............................................1 1.1 奈米簡介................................................1 1.2 奈米科技的最新發展......................................2 1.3 超順磁氧化鐵(Fe3O4)奈米粒子之介紹.......................9 1.4 DNA的簡介..........................................13 1.5 奈米於分離DNA上的應用...................................14 1.6 α-Fe2O3奈米粒子介紹與製備方式..........................17 第二章 超順磁奈米粒子的表面電荷於DNA分離上的應用............19 2.1 研究動機與目的.....................................19 2.2 實驗藥品與儀器.....................................21 2.2.1 藥品..........................................21 2.2.2 儀器..........................................22 2.3 實驗步驟 ..........................................23 2.3.1 製備Fe3O4奈米粒子.............................23 2.3.2 酸化去除Fe3O4奈米粒子表面保護.................23 2.3.3 DNA與Fe3O4奈米粒子進行吸附與脫附..............24 2.4 結果與討論.........................................26 2.4.1 TEM分析.......................................27 2.4.2 電泳分析......................................27 2.4.3 表面電荷分析..................................28 2.4.4 UV-Vis 分析...................................29 第三章 三氧化二鐵(α-Fe2O3)奈米粒子的製備...................37 3.1 研究動機與目的.....................................37 3.2 實驗藥品與儀器.....................................38 3.2.1 藥品..........................................38 3.2.2 儀器..........................................38 3.3 實驗步驟...........................................40 3.3.1 製備α相三氧化二鐵(α-Fe2O3)奈米粒子........40 3.3.2 分離及純化所得之α-Fe2O3奈米粒子..............40 3.3.3 控制溫度變因..................................40 3.3.4 不同尿素濃度變因..............................41 3.3.5 大量溶液條件..................................41 3.3.6 不同鐵離子....................................41 3.3.7 鍛燒程序......................................41 3.4 結果與討論.........................................42 3.4.1α-Fe2O3奈米粒子的鑑定.........................42 3.4.2 不同尿素濃度下所製備出的α-Fe2O3奈米粒子..............47 3.4.3 不同溫度下所製備出的α-Fe2O3奈米粒子..................48 3.4.4 時間變因..............................................48 3.4.5 大量溶液之製備情況....................................48 3.5 無結晶性α-Fe2O3奈米粒子................................49 3.5.1 無結晶性α-Fe2O3奈米粒子..............................49 3.5.2 鍛燒完後之α-Fe2O3奈米粒子............................49 第四章 結論.................................................64 參考文獻....................................................65

    1. Edelstin, A. S.;Cammarata, R. C. “Nanomaterials :Institute of
    Phycics Publishing”, 1996.
    2. Fendler, J. H. “Nanoparticles and Nanostructured Film:
    reparation,Characterization and Application”, Wiley-VCH, 1998.
    3. Goldstein, A. N. “Hanbook of nanophase Materials”, 1997.
    4. 莊萬發, “超微粒子理論應用”, 復漢出版社, 1994
    5. Tevye Kuykendall, Peter Pauzauskie, Sangkwon Lee, Yanfeng Zhang,
    Joshua Goldberger, Peidong Yang, NANO LETTERS., 2003, 3,
    1063-1066
    6. Javier E.; Mukherjee, Amiya K.. Applied Physics Letters, 2003, 83,
    1228
    7. Tatiana L. Makarova, Bertil Sundqvist, Roland Höhne, Pablo Esquinazi,
    Yakov Kopelevich, Peter Scharff, Valerii A. Davydov, Ludmila S.
    Kashevarova, Aleksandra V. Rakhmanina, Nature., 2001, 413, 716-718
    8. Yihua Gao, Yoshio Bando, Nature., 2002, 415, 599
    9. . Zaho, Y. Ando, Y. Liu, M. jinno and T. Suzuki. Physical Review
    Letters, 2003, 90, 187401.
    10. Ashish Modi, Nikhil Koratkar, Eric Lass, Bingqing Wei, and Pulickel
    M. Ajayan. Miniaturized gas ionization sensors using carbon nanotubes.
    NATURE ., 2003, 424, 171-174.
    11. Ongi Englander, Applied Physics Letters., 2003, 82, 4797
    12. A. M. Fennimore, T. D. Yuzvinsky, Wei-Qlang Han, M. S. Fuhrer,
    Nature, 2003, 424, 408
    13. J. A. Misewich, Science , 2003,300, 783
    14. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen.
    Phys. Rev. Lett., 2003, 90, 156401.
    15. J. Manuel Perez, F. Joseph Simeone, Yoshinaga Saeki, Lee Josephson,
    Ralph Weissleder, J. AM. CHEM. SOC. 2003, 125 10193
    16. Keith A. Williams, Nature, 2002, 420, 761
    17. Jyoti K. Jaiswal, Hedi Mattoussi, J. Matthew Mauro, Sanford M.
    Simon, Nature Biotechnology, 2003, 21, 47-51
    18. Jwa-Min Nam, Savka I. Stoeva, and Chad A. Mirkin. Journal of the
    American Chemical Society 2004
    19. B. Alberts et al“lecular Biology of the Cell” New York, 1989
    20. Chambon, Split Genes Scientific American.,1981, 4, 60-71
    21. J.E. Darnell, RNA Scientific American., 1985, 253, 68-78
    22. Szostak & Blackburn, Cell., 1982, 29, 245
    23. Keith A. Williams et al., Nature 2002, 420, 761.
    24. Xin Xiea, Xu Zhang, Huan Zhangc, Depu Chend,, Wei yang Fei,
    Journal of Magnetism and Magnetic Materials.,2004, 277, 16-23
    25. Bernards et al, Nature., 1983, 303, 592
    26. Keith A. Williams., Nature.,2002, 420, 761.
    27. Brandon Yoza, Mitsufumi Matsumoto, Tadashi Matsunaga, Journal of
    Biotechnology, 2002, 94, 217–224
    28. Xin Xiea, Xu Zhang, Huan Zhang, Depu Chend, Weiyang Fe, Journal of Magnetism
    and Magnetic Materials.,2004, 277, 16-23
    29. Dar-Bin Shieh, Fong-Yu Chang, Chia-Hao Su, Chen-Sheng Yeh,
    Biomaterials. 2005
    30. Russell J. Mumper, Zhengrong Cui, Methods, 2003, 31, 255-262
    31. S. Mornet, A. Vekris, J. Bonnet, E. Duguet, F. Grasset, J.-H. Choy,J.
    Portier, Materials Letters., 2000,42, 183-188
    32. Cai S. Z, Mou J. M, Zhang L. D, Acta. Phys. Sinica., 1992, 41, 1620
    33. Henglein, A. J. Chem. Rev., 1989, 89, 1861
    34. Wei Y, Zheng X. Z, Liu X. L, Lu P. Chin. Sci. Bull., 1996, 41, 315
    35. Han S. H, Zhang Y, Peng X. G, Li S. T, Xiao L. Z, Chem. J.Chin. Univ.,
    1993, 14, 1013
    36. Shen X. H, Gao H. C, Chemistry., 1995, 11, 7
    37. Kamala Kanta Sahu, Chandana Rath, Naresh Chandra Mishra, Journal
    of Colloid and Interface Science.,1997 185, 402-410
    38. Y. Li, H. Liao, Y. Qian, Materials Research Bulletin., 1998, 33, 841-844
    39. Fu Su Yen, Wei Chien chen, Janne Min Yang, Chen Tsung Hong, Nano
    letters., 2002, 2, 245-252
    40. T. P. Raming, A. J. A. Winnubst,. M. van Kats, A. P. Philipse, Journal of
    Colloid and Interface Science., 2002, 249, 346–350
    41. K. Kandori, T. Ishikawa, Journal of Colloid and Interface Science.,
    2004, 272, 246–248
    42. Guihua Wang, Gavin Whittaker, Andrew Harrison, Lijuan Song,
    Materials Research Bulletin., 1998, 33, 1571-1579
    43. M. Ocana, M. P. Morales, C. J. Serna, Journal of Colloid and Interface
    Science., 1999, 212, 317–323
    44. Xuehong Liao, Junjie Zhu a, Wei Zhong, Hong-Yuan Chen, Materials
    Letters., 2001., 50, 341–346
    45. Suoyuan Lian, Enbo Wang, Zhenhui Kang, Yunpeng Bai, Lei Gao, Min
    Jiang, Changwen Hu, Lin Xu, Solid State Communications., 2004, 129,
    485-490
    46. FY Chang, YS Yang, WH Huang, CS Yeh, CY Tsai, CL Wu and DB Shieh,
    Biomaterials ., 2005, 26 , 729-738
    47. Leland, J. K.; Bard, A. J. J. Phys. Chem. 1987, 91, 5076.
    48. Suoyuan, L. Enbo, Wang. Solid State Communications.,2004, 129,
    485-490
    49. William H. Sun, John M. Boyle, Symposium, 2001, 548-553

    下載圖示 校內:2007-08-10公開
    校外:2007-08-10公開
    QR CODE