簡易檢索 / 詳目顯示

研究生: 陳怡傑
Chen, I-Chieh
論文名稱: 以厭氧流體化床進行廚餘過篩液及狼尾草之氫醱酵程序研究
Unit Operation of Anaerobic Fluidized Bed Reactor for Hydrogen Fermentation with Kitchen Waste Sieved Liquid and Napiergrass
指導教授: 鄭幸雄
Cheng, Shung-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 164
中文關鍵詞: 乳酸流體化床纖維素木聚醣廚餘過篩液狼尾草厭氧氫醱酵
外文關鍵詞: Anaerobic fluidized bed reactor, Lactate, Napiergrass, Kitchen waste sieved, Anaerobic hydrogen fermentation
相關次數: 點閱:177下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣現行之廚餘回收每天可達約1,900噸,是來源豐富的有機廢棄物之一,其中廚餘之70%以上為水,其液體部分可夾代豐富之營養成分適合用於產氫。本研究主要產氫基質選用廚餘過篩液,是將廚餘滲出的液體部分經過1~2 mm篩孔過篩,可有效控制懸浮固體物大小及濃度在26 g-SS/L(VSS/SS=0.91),其目的是降低SS含量使流體化床能操作順利,而流體化床的優點為藉由流力控制使懸浮固體物(基質及菌體)有更長停留時間且濃度更高的在反應區中反應。而此廚餘過篩液也能提供高濃度COD約104 g/L及總醣濃度總26.5 g /L供微生物產氫利用,其中碳水化合物的電子含量最高,約佔總COD之30.3%(溶解性佔總COD之26.9%),其次為油脂佔23%、蛋白質佔22.7%,再來為乳酸佔14.9%及乙酸2.6%。另外其TVS約73 g /L,可知以溶解性有機物為多。從批次實驗也顯示,廚餘過篩液本身所夾帶之嗜酸性微生物可有效分解其內養分且具良好產氫能力。本研究還有額外添加狼尾草當輔助基質與廚餘過篩液混合,其目的有三個:(1) 發揮流體化床擔體功能;(2)直接提高基質之有機負荷;(3) 培養出分解纖維及半纖維素之產氫菌。實驗所用的風乾狼尾草渣每克約可提供1.1 g-COD,有機成分佔總重的88.5%(含水率7.2%),而總醣佔總重的51%,夾帶有總重7.5%的溶解性醣類、纖維素20%及半纖維素及其他醣類約佔23%。蛋白質佔8.5%。而本研究利用110 L厭氧流體化床(反應溫度55oC、pH=6、HRT=7.3 day及總迴流量35 L/min)以廚餘過篩液為主要基質和狼尾草為輔助基質在193天連續氫醱酵操作下,第三試程(廚餘過篩液+20 g/L狼尾草)在有機荷負為17.7 g-COD/L/day下,有最高產氫速率約為1.64 L-H2/L/day(比前面第一及第二試程提升約16.6%),但是氫氣產率3.74 mmol-H2/g-CODin為各試程中最低的(也就是狼尾草中大部分醣類難分解而拉低產率);第一試程(只進廚餘過篩液)在體積負荷為14.2 g-COD/L/day下,產氫速率約為1.41 L-H2/L/day,其中氫氣產率約4.0 mmol-H2/g-CODin為各試程中最高的。各試程溶解性醣類去除率均可達約92%。流體化床在各試程的操作中,出流主要代謝產物以丁酸產生最多(13~17 g/L) ,乙酸次之 (2.3~3.3 g/L) ,而丙酸(生成345 mg/L)及乙醇(生成400 mg/L)生成量相當少,顯示此槽內微生物與廚餘過篩液在於產氫代謝是相當旺盛的,不利於產氫的代謝途徑並不顯著。另外值得注意的是各試程進料廚餘過篩液中高濃度乳酸(10.7~14.5 g/L)有被顯著降解的現象,其中第二試程有最高乳酸降解率,平均98.3%。由本研究乳酸降解試驗可證實槽內微生物可利用乳酸加上少量乙酸共基質代謝生成氫氣及丁酸。故可將槽內主要產氫途徑分為:
    (1)乳酸代謝產氫
    Lactate + 0.4 HAc +0.7 H+ → 0.7 HBu + 0.6 H2 + CO2 + 0.4 H2O
    (2)醣類代謝產氫
    C6H12O6 + 2H2O → 4H2 + 2CO2 +2HAc
    C6H12O6 → 2H2 + 2CO2 + HBu
    可知乳酸代謝產氫時,醣類代謝產氫所產生的乙酸會被消耗掉,所觀測到的乙酸生成濃度會減少,而乳酸代謝產氫也會同時生成丁酸,會與醣類代謝產氫所產生的丁酸累加,所觀測到的丁酸濃度會大量增加。以乳酸降解率最好的第二試程(98.3%)及第三試程(94.9%)為例,實測值的丁酸產生量與乙酸產生量的莫耳比值HBu/HAc會相當高(Run 2: 5.19, Run 3: 3.64),但將乳酸代謝干擾去除所得的醣類代謝之HBu/HAc會接近1(Run 2: 1.38, Run 3: 0.87) ,這表示槽內微生物利用醣類的反應接近此式: 3C6H12O6 + 2H2O → 8H2 + 6CO2 + 2 HAc + 2 HBu,故此式也顯示槽內最大的醣類代謝之氫氣產率約2.67 mol-H2/mol-hexose。而由揮發酸產量所推的理論產氫量與實際只誤差4.7~12.2%,顯示由其他非產氫代謝(如蛋白質)所產的乙酸及丁酸很少,而其中所降解的廚餘過篩液中之乳酸所產的氫氣約佔總產氫量的14.8%(Run 2)~17.1%(Run 3),故對乳酸濃度相當高廚餘滲出液來說,本流體化床內的乳酸產氫菌群除了可大幅的增加其產氫潛能外,此乳酸代謝過程還會消耗酸度,這對連續流進料的產氫酸化系統之pH維持恆定操作有很大的幫助,可緩和醣類代謝產氫時的酸化程度而減少液鹼回饋量。另外槽內及廚餘中微生物經流體化床經100多天的狼尾草馴養,對纖維素(CMC)完全沒水解及產氫活性,但對對木聚醣(半纖維素)有良好水解產氫活性,其可能因狼尾草物料僅進行初步的物理破碎,纖維素的露出率有限,微生物較難接觸到(木質素及半纖維素包在纖維素外面)。故第三試程加最多狼尾草20 g/L有最好之產氫量,其多出的產氫量可能主要由狼尾草所夾帶的少量溶解性醣類(7.5%)及水解部分半纖維素所提供。在槽內微生物菌相探討方面,由SEM可觀測到廚餘及流體化床的微生物型態幾乎都以桿菌為主,另外由兩端帶螢光之T-RFLP前後端之分生檢測結果,與本研究團隊所做的廚餘產氫系統菌群clone之 T-RFLP資料庫做比對,本研究槽內主要之微生物可能為Clostridium sp.和Thermoanaerobacterium sp.(reverse: 307 bp & 317 bp),這兩屬中很多菌種對多種複合醣類都具有產氫能力,而且皆為桿菌型態並有內生孢子能力。另外,乳酸降解試驗中產氫最好的組別在T-RFLP的forward 495 bp波峰,跟批次植種比有明顯的提升(4.3%升到36.1%),故推測forward 495 bp位置可能為乳酸產氫菌,而在第二試程中乳酸去除率(98.3%)最好的時候,495 bp位置能成為主流波峰之一,最高可佔總族群的41.3%。然而在在Run 3中後期時,495 bp位置及其他較小的波峰位置幾乎快消失(只有最主流波峰不變),可能是因為Run 3之進料SS過高,到中後期常會有堵塞問題,故在清理時會增加氧氣進入反應槽中的機會,使部分厭氧微生物可能會受到影響。

    This study used kitchen waste sieved liquid (KWSL) (KW was sieved through 1~2 mm pore size) as a substrate for biohydrogenation by anaerobic fluidized bed reactor (AnFB). And later, different weights of napiergrass dregs were added to co-ferment with KWSL in long hydraulic retention time (HRT) (7.3 days).In Taiwan, the recycling amount of KW was up to 1900 ton/day in average. The moisture of KW was more than 75%, which (KWSL) could carry abundant nutrient and suit for biohydrogenation as well as the operation of AnFB (less suspended solid).The characteristic of KWML as follows: Total COD : 104,000 ± 16,000 mg/L (69% soluble) , Total Carbohydrate: 26,500 ± 6,300 mg/L (85% soluble ) , Total Org-N: 2,560 ± 270 mg/L (70% soluble) , lipid: 8,300 ± 3900 mg/L , suspended solid: 26,000 ± 5330 mg/L( 91 % volatile) , and it contained acetate (2,500 ± 340 mg/L) and high concentration lactate ( 10,700~14,500 mg/L ) . Napiergrass (1.1 g-COD/g- napiergrass dregs) is composed by about 20% cellulose and other lignin cellulose which are difficult to decomposition, this study expected that adding the napiergrass dregs with KWSL could degrade the cellulose and act as a kind of support material in the AnFBR.
    The AnFBR has a draft tube in reacting zone, and let solid has longer retention time to reaction by controlling recycle flow rate .Working volume of the AnFBR is 110 L. The seeding was from the sludge which used KW vegetable as substrate to produce hydrogen. Operation parameters of the AnFBR: temperature:55oC , pH:6 ,HRT:7.3 days and recirculation liquid flow rate: 35 L/min
    Total three runs: Run 1 (70 days) inputted KWSL only (organic loading rate: 14.2 ± 2.4 g-COD/L/day), and the hydrogen production rate (HPR) was 1.41 ± 0.27 L-H2/L/day. Run 2 (73 days) inputted KWSL with 5 g- napiergrass dregs/L , and the HPR was 1.41 ± 0.28 L-H2/L-day. Run 3 (47 days) increased the napiergrass concentration to 20 g- napiergrass dregs /L, and had the best HPR,1.64 ± 0.28 L-H2/L-day(Total biogas: 399.6 ± 40.4 L/L/day),in this study.
    In metabolites aspect, the main volatile fatty acids (VFA) in the effluent were butyrate (13,000~17,000 mg/L) and acetate (2,300~33,00 mg/L) production. Especially, the high concentration lactate in KWSL was degraded obviously (maximum removal : 98.3% for Run 2),and from the batch test of lactate degradation, it showed that lactate was degraded and hydrogen was produced, which the reaction was similar to “Lactate + 0.4 Acetate +0.7 H+ → 0.7 Butyrate + 0.6 H2 + CO2 + 0.4 H2O”. Regarding KWSL contained high concentration lactate has advantages of biohydrogenation and reducing the feed-back of alkali.

    中文摘要 I ABSTRACT IV 誌謝 VI 目錄 VIII 表目錄 XI 圖目錄 XIII 第一章 前言 1 第二章 文獻回顧 4 2-1 全球能源發展趨勢及生質氫能之發展 4 2-2 台灣廚餘清運現況及回收再利用之現況 8 2-3 厭氧生物產氫技術 11 2-3-1 厭氧生物氫醱酵機制 11 2-3-2 產氫酵素hydrogenase 17 2-3-3 厭氧氫醱酵之微生物 19 2-3-4 影響厭氧醱酵產氫之因素探討 23 2-4 廚餘中主要有機成分之水解及氫醱酵之探討 27 2-4-1 碳水化合物類(澱粉、纖維素及半纖維素)之厭氧水解及產氫 28 2-4-2 蛋白質之厭氧水解和代謝及對產氫之影響 37 2-4-3 油脂之厭氧水解和代謝產氫機制 39 2-5 厭氧流體化床反應槽 42 2-6 國外生物產氫應用於實際廢水之研究現況 45 2-6-1 化學廢水產氫研究結果 45 2-6-2 棕櫚油廠廢水產氫研究結果 47 第三章 材料與方法 49 3-1 110 L高溫脈衝式進料厭氧流體化床 (AnFB) 49 3-2 水質分析項目與使用儀器 54 3-2-1 一般水質分析項目 54 3-2-2 儀器分析 55 3-3 生化氫氣產能試驗及生物活性量測 57 3-3-1 生化氫氣產能試驗(BHP test) 57 3-3-2 生物活性量測數據整理方式 58 3-4 pH自動控制之批次反應器 59 3-5 掃描式電子顯微鏡 Scanning Electron Microscope(SEM) 60 3-6 分子生物檢測技術 61 3-6-1 總DNA 萃取 61 3-6-2 聚合酵素連鎖反應(Polymerase Chain Reaction, PCR) 63 3-6-3 尾端修飾限制片段長度多形性(T-RFLP) 64 第四章 結果與討論 66 4-1 110 L厭氧流體化床之基質、操作及硬體之改良與試程操作策略 66 4-1-1 先前進料基質(蔬菜廚餘)遭遇之問題與改良(廚餘過篩液) 66 4-1-2 流體化床硬體之問題與改良(pump) 68 4-1-3 流體化床操作之問題與改良(迴流量) 69 4-1-4 利用廚餘過篩液及狼尾草產氫之流體化床試程操作策略 70 4-2 台南市廚餘過篩液及狼尾草特性分析 75 4-2-1 廚餘過篩液特性分析 75 4-2-2 狼尾草特性分析 84 4-3 廚餘過篩液及狼尾草之高溫厭氧氫醱酵流體化床運轉操作探討 86 4-3-1 流體化床植種與廚餘過篩液之生化氫氣產能試驗 86 4-3-2 流體化床迴流量的控制及槽中懸浮固體物分布情況 88 4-3-3 各試程操作參數與狀況及功能指標 91 4-4 流體化床內微生物之乳酸降解批次試驗 108 4-5 廚餘過篩液之氫醱酵機制探討 117 4-6 由進出流揮發酸(乳酸、乙酸及丁酸)變化探討產氫平衡 122 4-7 槽內微生物針對纖維素及半纖維素及狼尾草的利用能力 128 4-8 微生物族群結構之探討 135 4-8-1 以掃描式電子顯微鏡觀察厭氧流體化床內微生物菌相 135 4-8-2 分子生物技術T-RFLP探討各試程微生物族群變化 140 第五章 結論與建議 147 5-1 結論 147 5-2 建議 150 第六章 參考文獻 152 自述 163

    Adams MWW, Mortenson LE and Chen JS, Hydrogenase, Biochimica et Biophysica Acta 594:105-176 (1980).
    Adams, M. W. W., and E. I. Stiefel, Biological hydrogen production: not so elementary. Science. 282: 1842-1843 (1998).
    Albracht SPJ, Spectroscopy the functional puzzle, in Hydrogen as a Fuel: Learning From Nature, ed by Cammack R, Frey M and Robson R, Taylor and Francis. London and New York (2001).
    Andreesen JR, Bahl H and Gottschalk G, Introduction to the physiology and biochemistry of genus Clostridium, In Clostridia, ed by Minton NP and Clark JD, Plenum Press, New York, pp 27-62 (1989).
    APHA, AWWA, and WEF, Standard methods for the examination of water and wastewater, 21st edn, American Public Health Association, Washington DC (2005).
    Bahl H and Dürre P, Clostridia, In Biotechnology: A Multi-Volume Comprehensive Treatise, 2nd ed., Vol. 1, ed by Rehm HJ, Reed G, Pühler A and Stadler P, VCH Verlagsgesellschaft, Weinheim, Germany, pp 285-323 (1993).
    Bai MD, Cheng SS and Tseng I.C, Biohydrogen produced due to peptone degradation by pretreated seed sludge, Porc. of 2001 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, Fukuoka, Japan, pp 315-320 (2001).
    Baronofsky JJ, Schreurs WJA and Kashket EV, Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermaceticum. Appl Environ Microbiol 48:1134-1139 (1984).
    Batstone DJ, Damien J, Keller J, Angelidaki I, Kalyuzhny SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H and Vavilin VA, Anaerobic Digestion Model No. 1 (ADM1), International Water Association, London, pp 1-5 (2002).
    Bayer E.A, Belaich JP, Shoham Y and Lamed R, The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521-554 (2004).
    Bockris JO’M, The origin of ideas on a Hydrogen Economy and its solution to decay of the environment, International Journal of Hydrogen Energy 27:731-740 (2002).
    Canganella F. and Wiegel J, The potential of thermophilic clostridia in biotechnology, In: The Clostridia and Biotechnology, ed by Woods DR, Butterworth-Heinemann, Stoneham, pp 393-417 (1993).
    Cann IKO, Stroot PG, Mackie KR, White BA and Mackie RI, Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp nov and Thermoanaerobacterium zeae sp nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51: 293–302 (2001).
    Coleman G and Grant MA, Characteristics of α-Amylase Formation by Bacillus subtilis. Nature 211: 306-307 (1966).
    Dabrock B, Bahl H and Gottschalk G, Parameters affecting solvent production by Clostridium pasteuriamun, Appl Environ Microbiol 58:1233-1239 (1992).
    Das D and Veziroğlu TN, Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13-28 (2001).
    Desvaux, M., E. Guedon, and H. Petitdemange, Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66:2461-2470 (2000).
    Diez-Gonzalez F, Russell JB and Hunter JB, The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate by Clostridium acetobutylicum strain P262. Arch Microbiol 164:36-42 (1995).
    Duangmanee T, Padmasiri SI, Simmons JJ and Sung S, Hydrogen Production by Anaerobic Microbial Communities Exposed to Repeated Heat Treatments. Wat Environ Res 79:975-983 (2007).
    Edna MM and Senti FR, Seperaiton of Amylose from Amylopectin of Starch by an Extraction-sedimentation Procedure. J Polym Sci 28: 1-9 (1958).
    Fabiano B and Perego P, Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes, International Journal of Hydrogen Energy 27:149-156 (2002).
    Fan LS, Gas-liquid-solid fluidization engineering, Butterworth publishers, USA, pp 33-37(1989).
    Fang HHP and Liu H, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology 82:87-93 (2002).
    Fumiaki T, Chang JD, Mizukami N, Tatsuo ST and Katsushige H, Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites, Canadian Journal of Microbiology 39:726-730 (1993).
    Girbal L and Soucaille P, Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool, Journal of Bacteriology 176:6433-6438 (1994).
    Gottschalk G, Bacterial Metabolism, 2nd ed, Springer-Verlag, New York, pp 276-279 (1985).
    Gupta R, Gigras P, Mohapatra H, Goswami VK and Chauhan B, Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599-1616 (2003).
    Hawkes FR, Dinsdale R, Hawkes DL and Hussy I, Sustainable fermentative hydrogen production: challenges for process optimization. Int J Hydrogen Energy 27:1339-1347 (2002).
    Henfner RA, The age of energy gases, 10th Repsol-Harvard Seminar on Energy Policy, Madrid, Spain (1999).
    Herbert D, Elsworth R, and Telling RC, The continuous culture of bacteria: a theoretical and experimental study. J. gen. Microbiol 14:601-622 (1956).
    Herbert D, Philipps PJ and Strange RE, Carbohydrate analysis, Methods Enzymol 5:265-277 (1971).
    Hippe H, Andreesen JR and Gottschalk G, The Genus Clostridium - Nonmedical, In The Prokaryotes, 2nd ed.,Vol.3, ed by Balows H, Truper HG, Dworkin M, Hareder W and Schleifer KH, Springer-Verlag, New York, pp 1800-1825 (1992).
    Holst TC, Truc A and Pujol R, Anaerobic fluidized beds: ten years of industrial experience. Wat Sci Technol, 36:415-422 (1997).
    Horiuchi J, Shimizu T, Kanno T and Kobayashi M, Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstat culture, Biotechnology and Bioengineering 13:155-157 (1999).
    Hwu CS, Tseng SK, Yuan CT, Kulik Z and Lettinga G, Biosorption of long-chain fatty acids in UASB treatment process, Water Research 32:1571-1579 (1998).
    Junelles AM, Janati-Idrissi R, Petitdemange H and Gay R, Iron effect on acetone butanol fermentation. Curr Microbiol 17:299-303 (1988).
    Kadar Z, De VT, van Noorden GE, Budde MAW, Szengyel Z and Reczey K, Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 113:497–508 (2004).
    Kalia VC, Jain SR, Kumar A and Joshi AP, Fermentationof bio-waste to H2 by Bacillus lichenoformis, World Journal of Microbiology and Biotechnology 10:224-227 (1994).
    Kataoka N, Miya A and Kiriyama K, Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Wat Sci Technol 36:41-47 (1997).
    Kim SH, Han SK and Shin HS, Two-phase anaerobic treatment system for fat-containing wastewater, Journal of Chemical Technology and Biotechnology 79:63-71 (2004).
    Klijn N, Bovie C, Dommes J, Hoolworf JD, Waals CBVD, Weerkamp AH and Nieuwenhof FFJ. Identification of Clostridium tyrobutyricum and related species using sugar fermentation, organic acid formation and DNA probes based on specific 16S rRNA sequences. Syst Appl Microbiol 17:249-256(1994).
    Kotay SM and Das D, Biohydrogen as a renewable energy resource prospects and potentials. Int J Hydrogen Energy 33:258-263 (2008).
    Kumar N and Das D, Production and purification of alpha-amylase from hydrogen-producing Enterobacter cloacae IIT-BT 08, Bioprocess and Biosystems Engineering 23:205-208 (2000).
    Lay JJ, Lee YJ and Noike T, Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 11:2579-2586 (1999).
    Lay JJ, Modeling and optimization of anaerobic digested sludge converting stach to hydrogen, Biotechnology and Bioengineering 68:269-278 (2000).
    Lee YJ, Miyahara T and Noike T, Effect of iron concentration on hydrogen fermentation, Bioresour Technol 80:227-231 (2001).
    Leschine Susan B, Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399-426 (1995).
    Li C and Fang HHP, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures, Critical Reviews in Environmental Science and Technology 37:1-39 (2007).
    Lin CY and Lay CH, Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 29:275-281 (2004).
    Liu SY, Rainey FA, Morgan HW, Mayer F and Wiegel J, Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46:388-396 (1996).
    Lovitt RW, Shen GJ and Zeikus JG, Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J bacteriol 170:2809-2815 (1988).
    Lynd LR, Weimer PJ, Zyl WHV and Pretorius I, Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506-577 (2002).
    Lynd LR, Zyl WH van, McBride JE and Laser M, Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577-583 (2005).
    McInerney MJ and Bryant MP, Anaerobic degradation of lactate by syntrophic associations of methanosarcina barkeri and Desulfovibrio Species and Effect of H2 on acetate degradation. Appl Environ Microbiol 41:346-354 (1981).
    McInerney MJ, Anaerobic hydrolysis and fermentation of fats and proteins, In Biology of anaerobic microorganisms, ed by Zehnder AJB, Wiley, New York pp 373-415 (1988).
    Miller DN, Bryant JE, Madsen EL and Ghiorse WC, Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715-5724 (1999).
    Miyake, J. Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York. (1998).
    Niel EWJV, Budde MAW, de Haas GG, van de WFJ, Claassen PAM and Stams AJM, Distinctive properties of high hydrogen producing extreme thermopiles, Cadicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27:1391–1398 (2002).
    O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S, Birkeland NK, Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 33:1221 – 1231 ( 2008 ).
    O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S and Birkeland N, Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme Microb Technol 41:583-590 (2007).
    O-Thong S, Prasertsan P, Karakashev D and Angelidaki I, Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy 33:1204-1214 (2008)
    Owen WF, Stuckey DC, Herly JRJB, Young LY and McCarty PL, Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485-492 (1979).
    Peguin S, Soucaille P, Momodulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl Environ Microbiol 61:403-405 (1995).
    Peters JW, Lanzilotta WN, Lemon BJ and Seefeldt LC, X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution, Science 282:1853-1858 (1998).
    Peters JW, Structure and mechanism of iron-only hydrogenase, Current Opinion in Structural Biology 9:670-676 (1999).
    Prasertsan P , O-Thong S, Birkeland NK, Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process. International workshop on biohtdrogen production technology (IWBT 2008).
    Reith JH, Wijffels RH and Barten H, Bio-Methane and Bio-Hydrogen, Dutch Biological Hydrogen Foundation, Hague, pp 9-32 (2003).
    Rittmann BE and McCarty PL, Environmental Biotechnology: Principle and Applications, International Edition 2001, McGraw-Hill, New York, pp 126-161†, 569-627‡ (2001).
    Roychoudhruy S, Parulekar SJ and Weigand WA, Cell Growth and α-Amylase Production Characteristic. Biotechnol Bioeng 33:197-206 (1989).
    Rose, J. K., D. A. Brummell, and A. B. Bennett, Twodivergent xyloglucan endotransglycosylases exhibit mutuallyexclusive patterns of expression in nasturtium. Plant Physiol110:493-9 (1996).
    Schwartz RD and Keller FA, Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH, Appl Environ Microbiol 43:1385-1392 (1982).
    Shen GJ, Annous BA, Lovitt RW, Jain MK and Zeikus JG, Biochemical route and control of butyrate synthesis in Butyribacterium methylotrophicum. Appl Microbiol Biotechnol 45:355-362 (1996).
    Storz G, Tartaglia LA, Farr SB and Ames BN, Bacterial defenses against oxidative stress. Trends Genet 6:363-368 (1979).
    Tanisho S, Wakao N and Kosako Y, Biological hydrogen production by Enterobacter aerogenes, International Journal of Hydrogen Energy 16:29-530 (1983).
    Tanisho, S., N. Kamiya, and N. Wakao, Hydrogen evolution of Enterobacter aerogen depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochimica. et. Biophysica. Acta. 973: 1-6 (1989).
    Tanisho S, Kuromoto M and Kadokura N, Effect of CO2 removal on hydrogen production by fermentation, International Journal of Hydrogen Energy 23:559-563 (1998).
    Terracciano JS, Schreurs WJA and Kashket ER, Membrance H+ conductance of Clostridium thermoaceticum and Clostridium thermoaceticum. Appl Environ Microbiol 53:782-786 (1987).
    Thauer RK, Jungermann K and Decker K, Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100-180 (1977).
    The Amylase Research Society of Japan, Their sources, isolation methods, properties and applications, in handbook of amylases and related enzymes, ed by Oxford, pergamon Press, New York, pp 116-124 (1988).
    Ueno Y, Haruta S, Ishii M and Igarashi Y, Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost, Applied Microbiology and Biotechnology 57:555-562 (2001).
    Updegraff DM, Semimicro determination of cellulose in biological materials. Analytical Biochem 32:420-424 (1969).
    Venkata Mohan S, Vijaya Bhaskar Y, Murali Krishna P, Chandrasekhara Rao N, Lalit Babu V, Sarma PN, Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: Influence of fermentation pH and substrate composition. International Journal of Hydrogen Energy 32:2286 – 2295 (2007).
    Venkata Mohan S, Vijaya Bhaskar Y, Sarma PN, Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. WAT E R RE S E A R C H 41:2652 – 2664 (2007 )
    Venkata Mohan S, Mohanakrishna G, Veer Raghavulu S, Sarma PN. Enhancing biohydrogen production from chemicalwastewater treatment in anaerobic sequencing batch biofilm reactor (AnSBBR) by bioaugmenting with selectively enriched kanamycin resistant anaerobic mixed consortia. International Journal of Hydrogen Energy 32:3284 – 3292 (2007).
    Wade LG, Organic Chemistry, Prentice-Hall, New Jersey, pp 1164-1168 (1999).
    Wang G and Wang DIC, Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl Environ Microbiol 47:294-298 (1984).
    Yokoi H, Mori S, Hirose J, Hayashi S and Takasaki Y, H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19, Biotechnology Letters 20:895-899 (1998).
    Yokoi H, Ohkawa T, Hirosse J, Hayashi S and Takasaki Y, Characteristics of hydrogen production by acid uric Enterobacter aerogen strain HO-39, Journal of Fermentation and Bioengineering 80:571-574 (1995).
    Zheng, X. J. and Yu, H. Q, Roles of pH in biologic production of hydrogen and volatile fatty acids from glucose by enriched anaerobic cultures. Appl. Biochem. Biotechnol. 112: 79-90 (2004).
    Zwietering MH, Jongenburger I, Rombouts FM and Van’t RK, Modeling of bacteria growth curve. Appl Environ Microbiol 56:1875-1881 (1990).
    王郁萱,高溫廚餘厭氧氫醱酵程序控制與水解機制之研究,成功大學環境工程學系碩士論文(2008)。
    李東峰,上流式厭氧流體化床模廠處理對苯二甲酸製程廢水的程序控制及生物特性之研究,成功大學環境工程學系碩士論文 (2000)。
    李學霖,單醣與聚醣類混合蛋白腖基質於厭氧產氫程序分解機制之比較研究,成功大學環境工程學系碩士論文(2005)。
    李澤坤,蔬菜廚餘厭氧氫醱酵程序及流體化床醱酵槽改良設計之研究,成功大學環境工程學系碩士論文(2008)。
    林佳弘,以中溫厭氧共消化下水道污泥與廚餘之研究,屏東科技大學環境工程與科學系碩士論文(2007)。
    林建勝,以生質能源程序探討廚餘厭氧氫醱酵之研究,成功大學環境工程學系碩士論文(2007)。
    施翠盈,本土性梭菌屬產氫菌株之分離與生理特性研究,國立成功大學生物學系碩士論文(2002)。
    范文 軒,有機廢棄物與豬糞尿污泥高溫厭氧共消化之研究,屏東科技大學環境工程學系碩士論文(2007)。
    張仕旻,利用薄膜反應器於高溫厭氧產生物程序之研究,國立成功大學環境工程學系碩士論文(2001)。
    陳文卿,台北市家戶廚餘厭氧醱酵示範系統建立及廚餘堆肥成品分析計畫成果報告,台北市環保局,台北(2006)。
    陳文卿,台北市家戶廚餘厭氧醱酵示範系統建立及廚餘堆肥成品分析計畫期末報告,台北市環保局,台北(2005)。
    趙禹杰,澱粉及蛋白腖複合基質厭氧醱酵產氫程序之功能評估,成功大學環境工程學系碩士論文(2004)。
    郭世強,廚餘厭氧醱酵產氫程序之功能評估,成功大學環境工程學系碩士論文(2006)。
    曾豐祥,纖維素分解產氫之微生物社會結構與動態變化,成功大學生命科學系碩士論文(2007)。
    黃仁唏,廚餘回收再利用(二),行政院環保署中部辦公室,台中(2001)。
    黃俊霖、陳晉照、林秋裕、劉文佐,以分子生物技術進行厭氧生物產氫菌群結構之研究,第25屆廢水處理研討會論文集(2000)。
    黃基森,有機廢棄物堆肥化處理現況及政策,第一屆廢棄物清理實務研討會論文集(1998)。
    楊易霖,有機廢棄物之厭氧消化-前處理及溫度之影響,屏東科技大學環境工程學系碩士論文(2003)。
    蔡宗岳,兩段式生物脫硝與硝化組合程序去除ABS製程廢水中有機物與含氮化合物之研究,成功大學環境工程學系碩士論文(1997)。
    鄭凱尹,高溫厭氧消化廚餘之研究,屏東科技大學環境工程學系碩士論文(2001)。
    蕭嘉瑢,複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究,成功大學環境工程學系碩士論文(2004)。
    簡青紅,利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構,國立成功大學生物學系碩士論文(2003)。
    傅俊中,生物化學工程-發酵與分離純化,新文京開發出版股份有限公司(2007)。

    下載圖示 校內:立即公開
    校外:2009-08-17公開
    QR CODE