簡易檢索 / 詳目顯示

研究生: 陳盈帆
Chen, Ying-Fan
論文名稱: 基因體重複性序列與甲基化修飾對基因表現影響之研究
Study of the impact of genomic repetitive sequences and DNA methylation on gene expression
指導教授: 孫孝芳
Sun, Hsiao-Fang
共同指導教授: 蘇益仁
Su, Ih-Jen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 110
中文關鍵詞: 甲基化重複性序列基因體
外文關鍵詞: methylation, repetitive, genome
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類的基因體中有超過50%比例的重複性序列,這些重複性序列目前瞭解可能與造成染色體結構的多樣性相關。本研究之目的是探討基因體重複性序列與甲基化修飾對基因表現之影響。低重複性序列(low copy repeat; LCR)是一種新定義的人類重複的DNA元件,推測LCR會經由非等位基因同源重组的機制形成缺失造成染色體顯微缺失症候群。為了要清楚分析這些低重複性序列,我們下載人類基因體序列,並利用生物資訊工具加以分析找尋剖析全基因體LCRs區域。以染色體22q11.2常見缺失區域為例,我們找出具體更精細的九個LCRs區域。同時我們發展出一套即時定量PCR的方法來檢測此區域的染色體套數。利用122例疑似DiGeorge/velocardiofacial syndromes患者進行檢測的結果證實臨床診斷染色體 22q11.2微缺失使用即時定量PCR檢測是可行的。此外,先前研究顯示癌細胞的染色體不穩定與基因體的高度重複性序列(例如LINE-1,SINE-Alu和-satellite)的低甲基化具有高度相關性。已知EB病毒會促成Burkitt’s淋巴瘤和鼻咽癌的染色體不穩定。因此我們針對基因體的高度重複性序列研究在不同EB病毒蛋白表現的情況下,這些序列甲基化的程度及對基因體基因表現的影響。EB病毒在由潛伏期轉換成裂解期時,病毒蛋白Zta以表觀遺傳機制使原本沉默的病毒基因逆轉表現來啟始潛伏期。我們以大量表現Zta蛋白的方式來模擬EB病毒轉活化,以此探討宿主細胞全基因體的甲基化變化情形。我們的數據推測,鼻咽癌細胞全基因體甲基化無關於Zta大量表現模擬EB病毒轉活化,並且Zta介導的基因激活無需甲基化修飾在鼻咽癌細胞基因上。針對EB病毒潛伏時期的重要蛋白LMP1,我們利用甲基化敏感限制性內切酶NotI結合啟動子晶片來探討LMP1大量表現於於BJAB細胞中全基因體的甲基化特徵。我們的數據顯示雖然基因體在整體的甲基化程度上沒有發生巨大的改變,但甲基模式在特殊區域及一些個別基因的啟動子有改變,這些包括重複序列LINE-1的過甲基化,-satellite的低甲基化和X染色體不平衡失活。這樣的結果與DNMT3b表現量增加相符合。在LMP1表現的基因表達晶片上有差異的基因與細胞週期調控和淋巴癌生物標記有高度相關性。結合啟動子及基因表達晶片結果顯示,多數在基因表達晶片上有表現差異的基因並沒有在啟動子上有甲基化的變化。由此我們的研究結果顯示LMP1表現不透過甲基化來改變基因體基因表現。相反的,EBV感染過程中LMP1引起宿主基因表達可能主要透過訊號傳導途徑。

    Human genome contains more than 50% proportion of repetitive DNA sequences, mostly involved chromosome structural diversity. The objective of this dissertation is to study of the impact of genomic repetitive sequences and DNA methylation on gene expression. Low copy repeat (LCR) is a new class of repetitive DNA element and has been implicated in many human disorders through non-allelic homologous recombination mechanism. In order to dissect and refine region-specific LCRs, we downloaded and analyzed the publicly available human genome sequences using computational approaches. We further took the common deletion region in chromosome 22q11.2 as an example to illustrate the use of real-time quantitative PCR assay to detect micro deletion in this region. The assay was validated in 122 patients with suspected DiGeorge/velocardiofacial (DGS/VCFS) syndromes. Our results indicated that the developed assay is reliable for clinical diagnosis. In addition, global hypomethylation of repetitive genomic sequences such as long interspersed nuclear element 1 (LINE-1), SINE-Alu and alpha-satellite (-satellite) sequences has been associated with chromosomal instability in cancers. In addition, it has been reported that Epstein-Barr virus (EBV) promotes genomic instability in Burkitt's lymphoma and nasopharyngeal carcinoma (NPC). Thus, we investigated the methylation status of high repetitive genomic sequences under the expressions of different EBV proteins, and the impact on gene expression. EBV alternates between latency and lytic replication, and the lytic cycle is initiated when epigenetic silencing is reversed by Zta protein. We first examined methylation levels in a Zta-expression model to determine the genomic methylation of NPC cells upon EBV reactivation. Our data suggest that alteration of NPC cellular gene expression following EBV reactivation reflects methylation-independent Zta-mediated gene activation and not epigenetic modification of the host genome. Next, we analyzed the whole genome methylation profile in EBV-encoded oncoprotein latent membrane protein (LMP1)-expressing BJAB cells. By using methylation-sensitive NotI restriction enzyme, we studied promoter methylation pattern of individual genes at genomic scale. Although the overall methylation content was not changed dramatically, it reshuffled methylation marks of individual genes and specific regions including overmethylation of LINE-1, hypomethylation of -satellite, and unbalanced X chromosome inactivation. Overall, these data consist with the result that LMP1 increases DNMT3b expression. Furthermore, our data demonstrated the genes where expression level was significantly altered in BJAB-LMP1 cells are highly associated with cell cycle regulation and the biological markers of lymphoma. Finally, our data suggested that alteration of gene expression observed in BJAB-LMP1 cells is not through the change in promoter methylation. Rather, LMP1-mediated signaling may play significant role in eliciting host gene expression during EBV infection.

    Abstract in Chinese I Abstract in English II Acknowledgments III Table of Contents V List of Tables IX List of Figures X CHAPTER ONE 1 Literature review 1 1. Literature review 2 1.1 Repetitive elements in the human genome 2 1.1.1 Definition of repetitive DNA sequence 2 1.1.2 Biological categorizations ofrepetitive sequences 2 1.1.2.2 Tandem repeats 3 1.1.2.2 Interspersed repeats 3 1.1.3 Computational categorizations of repetitive sequences 5 1.1.4 Functional roles of repetitive elements 5 1.1.4.1 Repetitive elements cause genome instability 6 1.1.4.2 Repetitive elements influence the expression of neighboring genes 6 1.2 Epigenetic regulation 7 1.2.1 DNA methylation 8 1.2.2 DNA methylation in human cancer 9 1.2.3 Repetitive elements affect gene expression through epigenetic regulation 10 1.3 Aims of the present study 11 CHAPTER TWO 12 Computational analysis and refinement of sequence structure on chromosome 22q11.2 region: Application to the development of quantitative real-time PCR assay for clinical diagnosis 12 2.1 Abstract 13 2.2 Introduction 14 2.3 Materials and methods 17 2.3.1 Computational analysis of chromosome 22q11.2 LCR 17 2.3.2 Patients 17 2.3.3 FISH 17 2.3.4 DNA extraction 18 2.3.5 Primer design 18 2.3.6 QPCR 19 2.3.7 Data analysis 19 2.4 Results 21 2.4.1 Refinement of sequence structure on chromosome 22q11.2 LCRs 21 2.4.2 Assay development, analysis, and validation 22 2.4.3 Identification of chromosome 22q11.2 deletions using position-specific gene primers in real-time QPCR assays 23 2.5 Discussion 23 CHAPTER THREE 32 Analysis of global methylation during EBV reactivation using a Zta-overexpressing NPC cell line 32 3.1 Abstract 33 3.2 Introduction 34 3.3 Materials and methods 37 3.3.1 Cell lines and genomic DNA extraction. 37 3.3.2 Southern blot probes for the detection of repetitive DNA sequences. 37 3.3.3 Southern blotting. 38 3.3.4 Protein preparation and Western blotting. 39 3.3.5 Methylation-specific quantitative PCR (qPCR). 39 3.3.6 Quantification of total 5-methylcytosine content in genomic DNA by high-performance capillary electrophoresis (HPCE). 40 3.3.7 Human androgen receptor assay (HUMARA). 41 3.4 Results 42 3.4 1 Probe preparation for Southern blot analysis 42 3.4.2 Zta overexpression does not alter global cytosine methylation in HONE-tetonZ cells. 42 3.4.3 Zta overexpression does not alter X chromosome methylation in HONE-tetonZ cells. 43 3.4.4 Zta overexpression does not alter methylation of the IGF2/H19 imprinting control region in HONE-tetonZ cells. 44 3.4.5 Zta overexpression does not alter EGR-1 promoter methylation near ZREs in HONE-tetonZ cells. 45 3.4.6 Zta overexpression does not alter genomic 5-methylcytosine content in HONE-tetonZ cells. 45 3.4.7 Zta overexpression does not alter expression of DNMTs or LINE ORFs. 46 3.5 Discussion 47 CHAPTER FOUR 56 Study the effect of overexpression of Latent Membrane Protein 1 in B-cell Lymphoma 56 4.1 Abstract 57 4.2 Introduction 58 4.3 Materials and methods 60 4.3.1 Cell lines, synchronization and DNA/RNA extraction 60 4.3.2 Methylation-sensitive Southern blotting 60 4.3.3 Protein preparation and Western blotting analysis 60 4.3.4 Methyl-sensitive real-time PCR and quantitative PCR 60 4.3.5 Quantitation of global m5C levels 61 4.3.6 Human androgen receptor assay (HUMARA) 61 4.3.7 Generation and analysis of genome-wide methylation tags 61 4.3.8 Estishment of gene expression profiles in BJAB and BJAB-LMP1 cells 63 4.3.9 Pathway analysis of genes showing significant expression changes 63 4.3.9 Statistical analysis 63 4.4 Results 64 4.4.1 The level of methylcytocine does not change upon LMP1 expression in lymphoma cells 64 4.4.2 LMP1 has a modest effect on DNMTs expression in lymphoma cells 64 4.4.3 Global DNA methylation pattern changes upon LMP1 expression in lymphoma cells 64 4.4.4 LMP1 expression changes promoter methylation pattern in part of the screened genes. 66 4.4.5 LMP1 expression changes the expression profile of 5% of the genes 67 4.4.6 LMP1 regulates genes that are associated with lymphoma and cell cycle. 67 4.4.7 Difference in gene expression induced by LMP1-expression is not caused by promoter methylation 68 4.4.8 CHTF18 is upregulated in LMP1-expressing BJAB cells. 69 4.4 Discussion 70 CHAPTER FIVE 82 General Discussion and Conclusion 82 5.1 General Summary 83 5.1.1 General Discussion 83 5.2 Conclusion and significance of this thesis 85 References 86 Appendix Tables 97 Appendix Figures. 106

    Adamson A. L., and Kenney S. (2001). Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75: 2388-99.
    Almeida T., Alonso I., Martins S., Ramos E. M., Azevedo L., Ohno K., Amorim A., Saraiva-Pereira M. L., Jardim L. B., Matsuura T., Sequeiros J., and Silveira I. (2009). Ancestral origin of the ATTCT repeat expansion in spinocerebellar ataxia type 10 (SCA10). PLoS One 4: e4553.
    Altschul S. F., Gish W., Miller W., Myers E. W., and Lipman D. J. (1990). Basic local alignment search tool. J Mol Biol 215: 403-10.
    Amon W., and Farrell P. J. (2005). Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15: 149-56.
    Aravin A. A., and Hannon G. J. (2008). Small RNA silencing pathways in germ and stem cells. Cold Spring Harb Symp Quant Biol 73: 283-90.
    Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., Davis A. P., Dolinski K., Dwight S. S., Eppig J. T., Harris M. A., Hill D. P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J. C., Richardson J. E., Ringwald M., Rubin G. M., and Sherlock G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25-9.
    Bailey J. A., Gu Z., Clark R. A., Reinert K., Samonte R. V., Schwartz S., Adams M. D., Myers E. W., Li P. W., and Eichler E. E. (2002). Recent segmental duplications in the human genome. Science 297: 1003-7.
    Bailey J. A., Liu G., and Eichler E. E. (2003). An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73: 823-34.
    Bannert N., and Kurth R. (2004). Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A 101 Suppl 2: 14572-9.
    Bao Z., and Eddy S. R. (2002). Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12: 1269-76.
    Bartsch O., Nemeckova M., Kocarek E., Wagner A., Puchmajerova A., Poppe M., Ounap K., and Goetz P. (2003). DiGeorge/velocardiofacial syndrome: FISH studies of chromosomes 22q11 and 10p14, and clinical reports on the proximal 22q11 deletion. Am J Med Genet A 117A: 1-5.
    Baylin S. B., and Herman J. G. (2000). "Epigenetics and loss of gene function in cancer.," Eaton Publishing, Natick.
    Bell A., and Rickinson A. B. (2003). Epstein-Barr virus, the TCL-1 oncogene and Burkitt's lymphoma. Trends Microbiol 11: 495-7.
    Bhende P. M., Seaman W. T., Delecluse H. J., and Kenney S. C. (2004). The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36: 1099-104.
    Bird A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16: 6-21.
    Boon K., Tomfohr J. K., Bailey N. W., Garantziotis S., Li Z., Brass D. M., Maruoka S., Hollingsworth J. W., and Schwartz D. A. (2008). Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping. BMC Genomics 9: 598.
    Bourque G., Leong B., Vega V. B., Chen X., Lee Y. L., Srinivasan K. G., Chew J. L., Ruan Y., Wei C. L., Ng H. H., and Liu E. T. (2008). Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18: 1752-62.
    Buch B., Galan J. J., Lara M., Ruiz R., Segura C., Real L. M., Martinez-Moya M., and Ruiz A. (2003). Scanning of Y-chromosome azoospermia factors loci using real-time polymerase chain reaction and melting curve analysis. Fertil Steril 80: 907-13.
    Buckley P. G., Mantripragada K. K., Benetkiewicz M., Tapia-Paez I., Diaz De Stahl T., Rosenquist M., Ali H., Jarbo C., De Bustos C., Hirvela C., Sinder Wilen B., Fransson I., Thyr C., Johnsson B. I., Bruder C. E., Menzel U., Hergersberg M., Mandahl N., Blennow E., Wedell A., Beare D. M., Collins J. E., Dunham I., Albertson D., Pinkel D., Bastian B. C., Faruqi A. F., Lasken R. S., Ichimura K., Collins V. P., and Dumanski J. P. (2002). A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Hum Mol Genet 11: 3221-9.
    Cantrell M. A., Carstens B. C., and Wichman H. A. (2009). X chromosome inactivation and Xist evolution in a rodent lacking LINE-1 activity. PLoS One 4: e6252.
    Carlson C., Sirotkin H., Pandita R., Goldberg R., McKie J., Wadey R., Patanjali S. R., Weissman S. M., Anyane-Yeboa K., Warburton D., Scambler P., Shprintzen R., Kucherlapati R., and Morrow B. E. (1997). Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet 61: 620-9.
    Cayrol C., and Flemington E. K. (1995). Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1. J Virol 69: 4206-12.
    Chang Y., Lee H. H., Chen Y. T., Lu J., Wu S. Y., Chen C. W., Takada K., and Tsai C. H. (2006). Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol 80: 7748-55.
    Chen C., Gentles A. J., Jurka J., and Karlin S. (2002). Genes, pseudogenes, and Alu sequence organization across human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99: 2930-5.
    Chen C., Li D., and Guo N. (2009). Regulation of cellular and viral protein expression by the Epstein-Barr virus transcriptional regulator Zta: implications for therapy of EBV associated tumors. Cancer Biol Ther 8: 987-95.
    Chen T., and Li E. (2006). Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol 301: 179-201.
    Chen Y. F., Kou P. L., Tsai S. J., Chen K. F., Chan H. H., Chen C. M., and Sun H. S. (2006). Computational analysis and refinement of sequence structure on chromosome 22q11.2 region: application to the development of quantitative real-time PCR assay for clinical diagnosis. Genomics 87: 290-7.
    Cheng Z., Ventura M., She X., Khaitovich P., Graves T., Osoegawa K., Church D., DeJong P., Wilson R. K., Paabo S., Rocchi M., and Eichler E. E. (2005). A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437: 88-93.
    Chiu Y. F., Tung C. P., Lee Y. H., Wang W. H., Li C., Hung J. Y., Wang C. Y., Kawaguchi Y., and Liu S. T. (2007). A comprehensive library of mutations of Epstein Barr virus. J Gen Virol 88: 2463-72.
    Choo K. H., Vissel B., Nagy A., Earle E., and Kalitsis P. (1991). A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res 19: 1179-82.
    Chuang H. C., Lay J. D., Hsieh W. C., Wang H. C., Chang Y., Chuang S. E., and Su I. J. (2005). Epstein-Barr virus LMP1 inhibits the expression of SAP gene and upregulates Th1 cytokines in the pathogenesis of hemophagocytic syndrome. Blood 106: 3090-6.
    Cohen J. I. (2000). Epstein-Barr virus infection. N Engl J Med 343: 481-92.
    Costello J. F., Fruhwald M. C., Smiraglia D. J., Rush L. J., Robertson G. P., Gao X., Wright F. A., Feramisco J. D., Peltomaki P., Lang J. C., Schuller D. E., Yu L., Bloomfield C. D., Caligiuri M. A., Yates A., Nishikawa R., Su Huang H., Petrelli N. J., Zhang X., O'Dorisio M. S., Held W. A., Cavenee W. K., and Plass C. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24: 132-8.
    Craig F. E., Gulley M. L., and Banks P. M. (1993). Posttransplantation lymphoproliferative disorders. Am J Clin Pathol 99: 265-76.
    Cruchley A. T., Williams D. M., Niedobitek G., and Young L. S. (1997). Epstein-Barr virus: biology and disease. Oral Dis 3 Suppl 1: S156-63.
    Cui H. (2007). Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis Markers 23: 105-12.
    Cummings C. J., and Zoghbi H. Y. (2000). Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1: 281-328.
    Dardari R., Khyatti M., Benider A., Jouhadi H., Kahlain A., Cochet C., Mansouri A., El Gueddari B., Benslimane A., and Joab I. (2000). Antibodies to the Epstein-Barr virus transactivator protein (ZEBRA) as a valuable biomarker in young patients with nasopharyngeal carcinoma. Int J Cancer 86: 71-5.
    Davis M., Malcolm S., and Rabbitts T. H. (1984). Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells. Nature 308: 286-8.
    Dickerson S. J., Xing Y., Robinson A. R., Seaman W. T., Gruffat H., and Kenney S. C. (2009). Methylation-dependent binding of the epstein-barr virus BZLF1 protein to viral promoters. PLoS Pathog 5: e1000356.
    Dunham I., Shimizu N., Roe B. A., Chissoe S., Hunt A. R., Collins J. E., Bruskiewich R., Beare D. M., Clamp M., Smink L. J., Ainscough R., Almeida J. P., Babbage A., Bagguley C., Bailey J., Barlow K., Bates K. N., Beasley O., Bird C. P., Blakey S., Bridgeman A. M., Buck D., Burgess J., Burrill W. D., O'Brien K. P., and et al. (1999). The DNA sequence of human chromosome 22. Nature 402: 489-95.
    Edelmann J., Richter K., Hanel C., Hering S., and Horn L. C. (2006). X chromosomal and autosomal loss of heterozygosity and microsatellite instability in human cervical carcinoma. Int J Gynecol Cancer 16: 1248-53.
    Edelmann L., Pandita R. K., and Morrow B. E. (1999a). Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am J Hum Genet 64: 1076-86.
    Edelmann L., Pandita R. K., Spiteri E., Funke B., Goldberg R., Palanisamy N., Chaganti R. S. K., Magenis E., Shprintzen R. J., and Morrow B. E. (1999b). A common molecular basis for rearrangement disorders on chromosome 22q11. Hum. Mol. Genet. 8: 1157-1167.
    Eden A., Gaudet F., Waghmare A., and Jaenisch R. (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300: 455.
    Egger G., Liang G., Aparicio A., and Jones P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457-63.
    Ehrlich M. (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400-13.
    Ehrlich M., Hopkins N. E., Jiang G., Dome J. S., Yu M. C., Woods C. B., Tomlinson G. E., Chintagumpala M., Champagne M., Dillerg L., Parham D. M., and Sawyer J. (2003). Satellite DNA hypomethylation in karyotyped Wilms tumors. Cancer Genet Cytogenet 141: 97-105.
    Ehrlich M., Jiang G., Fiala E., Dome J. S., Yu M. C., Long T. I., Youn B., Sohn O. S., Widschwendter M., Tomlinson G. E., Chintagumpala M., Champagne M., Parham D., Liang G., Malik K., and Laird P. W. (2002). Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21: 6694-702.
    Ehrlich M., Woods C. B., Yu M. C., Dubeau L., Yang F., Campan M., Weisenberger D. J., Long T., Youn B., Fiala E. S., and Laird P. W. (2006). Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25: 2636-45.
    Eichler E. E. (2001). Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet 17: 661-9.
    Eller C. D., Regelson M., Merriman B., Nelson S., Horvath S., and Marahrens Y. (2007). Repetitive sequence environment distinguishes housekeeping genes. Gene 390: 153-65.
    Ellis L., Atadja P. W., and Johnstone R. W. (2009). Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8: 1409-20.
    Emanuel B. S., and Shaikh T. H. (2001). Segmental duplications: an 'expanding' role in genomic instability and disease. Nat Rev Genet 2: 791-800.
    Ensenauer R. E., Adeyinka A., Flynn H. C., Michels V. V., Lindor N. M., Dawson D. B., Thorland E. C., Lorentz C. P., Goldstein J. L., McDonald M. T., Smith W. E., Simon-Fayard E., Alexander A. A., Kulharya A. S., Ketterling R. P., Clark R. D., and Jalal S. M. (2003). Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J Hum Genet 73: 1027-40.
    Esteller M. (2008). Epigenetics in cancer. N Engl J Med 358: 1148-59.
    Etoh T., Kanai Y., Ushijima S., Nakagawa T., Nakanishi Y., Sasako M., Kitano S., and Hirohashi S. (2004). Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol 164: 689-99.
    Fazzari M. J., and Greally J. M. (2004). Epigenomics: beyond CpG islands. Nat Rev Genet 5: 446-55.
    Feinberg A. P., and Vogelstein B. (1983). Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111: 47-54.
    Fuks F., Hurd P. J., Wolf D., Nan X., Bird A. P., and Kouzarides T. (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278: 4035-40.
    Gaillard C., and Strauss F. (2006). DNA topology and genome organization in higher eukaryotes: a model. J Theor Biol 243: 604-7.
    Gartler S. M., and Riggs A. D. (1983). Mammalian X-chromosome inactivation. Annu Rev Genet 17: 155-90.
    Gebhardt G. S., Devriendt K., Thoelen R., Swillen A., Pijkels E., Fryns J. P., Vermeesch J. R., and Gewillig M. (2003). No evidence for a parental inversion polymorphism predisposing to rearrangements at 22q11.2 in the DiGeorge/Velocardiofacial syndrome. Eur J Hum Genet 11: 109-11.
    Goll M. G., and Bestor T. H. (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74: 481-514.
    Goodier J. L., Ostertag E. M., Engleka K. A., Seleme M. C., and Kazazian H. H., Jr. (2004). A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet 13: 1041-8.
    Goodship J., Cross I., LiLing J., and Wren C. (1998). A population study of chromosome 22q11 deletions in infancy. Arch Dis Child 79: 348-51.
    Grover D., Majumder P. P., C B. R., Brahmachari S. K., and Mukerji M. (2003). Nonrandom distribution of alu elements in genes of various functional categories: insight from analysis of human chromosomes 21 and 22. Mol Biol Evol 20: 1420-4.
    Habib M., Fares F., Bourgeois C. A., Bella C., Bernardino J., Hernandez-Blazquez F., de Capoa A., and Niveleau A. (1999). DNA global hypomethylation in EBV-transformed interphase nuclei. Exp Cell Res 249: 46-53.
    Hansen R. S. (2003). X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 12: 2559-67.
    Hasler J., and Strub K. (2006). Alu elements as regulators of gene expression. Nucleic Acids Res 34: 5491-7.
    Hatakeyama C., Anderson C. L., Beever C. L., Penaherrera M. S., Brown C. J., and Robinson W. P. (2004). The dynamics of X-inactivation skewing as women age. Clin Genet 66: 327-32.
    Hatzivassiliou E., and Mosialos G. (2002). Cellular signaling pathways engaged by the Epstein-Barr virus transforming protein LMP1. Front Biosci 7: d319-29.
    Heather J., Flower K., Isaac S., and Sinclair A. J. (2009). The Epstein-Barr virus lytic cycle activator Zta interacts with methylated ZRE in the promoter of host target gene egr1. J Gen Virol 90: 1450-4.
    Heidenfelder B. L., and Topal M. D. (2003). Effects of sequence on repeat expansion during DNA replication. Nucleic Acids Res 31: 7159-64.
    Hermann A., Gowher H., and Jeltsch A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61: 2571-87.
    Hong G. K., Delecluse H. J., Gruffat H., Morrison T. E., Feng W. H., Sergeant A., and Kenney S. C. (2004). The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1. J Virol 78: 4983-92.
    Hublitz P., Albert M., and Peters A. H. (2009). Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol 53: 335-54.
    Ikuta K., Satoh Y., Hoshikawa Y., and Sairenji T. (2000). Detection of Epstein-Barr virus in salivas and throat washings in healthy adults and children. Microbes Infect 2: 115-20.
    Inoue K., and Lupski J. R. (2002). Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet 3: 199-242.
    Jasinska A., and Krzyzosiak W. J. (2004). Repetitive sequences that shape the human transcriptome. FEBS Lett 567: 136-41.
    Jones P. A., and Baylin S. B. (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415-28.
    Jovanovic L., Delahunt B., McIver B., Eberhardt N. L., and Grebe S. K. (2003). Optimising restriction enzyme cleavage of DNA derived from archival histopathological samples: an improved HUMARA assay. Pathology 35: 70-4.
    Jurka J., Kohany O., Pavlicek A., Kapitonov V. V., and Jurka M. V. (2004). Duplication, coclustering, and selection of human Alu retrotransposons. Proc Natl Acad Sci U S A 101: 1268-72.
    Kang G. H., Lee S., Kim W. H., Lee H. W., Kim J. C., Rhyu M. G., and Ro J. Y. (2002). Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 160: 787-94.
    Karasawa M., Tsukamoto N., Yamane A., Okamoto K., Maehara T., Yokohama A., Nojima Y., and Omine M. (2001). Analysis of the distribution of CAG repeats and X-chromosome inactivation status of HUMARA gene in healthy female subjects using improved fluorescence-based assay. Int J Hematol 74: 281-6.
    Kariyazono H., Ohno T., Ihara K., Igarashi H., Joh-o K., Ishikawa S., and Hara T. (2001). Rapid detection of the 22q11.2 deletion with quantitative real-time PCR. Mol Cell Probes 15: 71-3.
    Kaufman P. D., and Rio D. C. (1992). P element transposition in vitro proceeds by a cut-and-paste mechanism and uses GTP as a cofactor. Cell 69: 27-39.
    Kavi H. H., Fernandez H. R., Xie W., and Birchler J. A. (2005). RNA silencing in Drosophila. FEBS Lett 579: 5940-9.
    Kehrer-Sawatzki H., and Cooper D. N. (2008). Molecular mechanisms of chromosomal rearrangement during primate evolution. Chromosome Res 16: 41-56.
    Koszul R., Caburet S., Dujon B., and Fischer G. (2004). Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. Embo J 23: 234-43.
    Koszul R., Dujon B., and Fischer G. (2006). Stability of large segmental duplications in the yeast genome. Genetics 172: 2211-22.
    Kreahling J., and Graveley B. R. (2004). The origins and implications of Aluternative splicing. Trends Genet 20: 1-4.
    Laird P. W. (2003). The power and the promise of DNA methylation markers. Nat Rev Cancer 3: 253-66.
    Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D., Harris K., Heaford A., Howland J., Kann L., Lehoczky J., LeVine R., McEwan P., McKernan K., Meldrim J., Mesirov J. P., Miranda C., Morris W., Naylor J., Raymond C., Rosetti M., Santos R., Sheridan A., Sougnez C., Stange-Thomann N., Stojanovic N., Subramanian A., Wyman D., Rogers J., Sulston J., Ainscough R., Beck S., Bentley D., Burton J., Clee C., Carter N., Coulson A., Deadman R., Deloukas P., Dunham A., Dunham I., Durbin R., French L., Grafham D., Gregory S., Hubbard T., Humphray S., Hunt A., Jones M., Lloyd C., McMurray A., Matthews L., Mercer S., Milne S., Mullikin J. C., Mungall A., Plumb R., Ross M., Shownkeen R., Sims S., Waterston R. H., Wilson R. K., Hillier L. W., McPherson J. D., Marra M. A., Mardis E. R., Fulton L. A., Chinwalla A. T., Pepin K. H., Gish W. R., Chissoe S. L., Wendl M. C., Delehaunty K. D., Miner T. L., Delehaunty A., Kramer J. B., Cook L. L., Fulton R. S., Johnson D. L., Minx P. J., Clifton S. W., Hawkins T., Branscomb E., Predki P., Richardson P., Wenning S., Slezak T., Doggett N., Cheng J. F., Olsen A., Lucas S., Elkin C., Uberbacher E., Frazier M., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921.
    Lay J. D., Tsao C. J., Chen J. Y., Kadin M. E., and Su I. J. (1997). Upregulation of tumor necrosis factor-alpha gene by Epstein-Barr virus and activation of macrophages in Epstein-Barr virus-infected T cells in the pathogenesis of hemophagocytic syndrome. J Clin Invest 100: 1969-79.
    Le Fleche P., Hauck Y., Onteniente L., Prieur A., Denoeud F., Ramisse V., Sylvestre P., Benson G., Ramisse F., and Vergnaud G. (2001). A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol 1: 2.
    Lewin B. (1997). "Genes VI," Oxford University Press.
    Li H. P., Leu Y. W., and Chang Y. S. (2005). Epigenetic changes in virus-associated human cancers. Cell Res 15: 262-71.
    Liang G., Chan M. F., Tomigahara Y., Tsai Y. C., Gonzales F. A., Li E., Laird P. W., and Jones P. A. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22: 480-91.
    Lieb J. D., Beck S., Bulyk M. L., Farnham P., Hattori N., Henikoff S., Liu X. S., Okumura K., Shiota K., Ushijima T., and Greally J. M. (2006). Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenet Genome Res 114: 1-15.
    Lieberman P. M., Hardwick J. M., Sample J., Hayward G. S., and Hayward S. D. (1990). The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J Virol 64: 1143-55.
    Linardopoulou E. V., Williams E. M., Fan Y., Friedman C., Young J. M., and Trask B. J. (2005). Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94-100.
    Lippman Z., Gendrel A. V., Black M., Vaughn M. W., Dedhia N., McCombie W. R., Lavine K., Mittal V., May B., Kasschau K. D., Carrington J. C., Doerge R. W., Colot V., and Martienssen R. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471-6.
    Liquori C. L., Ricker K., Moseley M. L., Jacobsen J. F., Kress W., Naylor S. L., Day J. W., and Ranum L. P. (2001). Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293: 864-7.
    Losada A. (2008). The regulation of sister chromatid cohesion. Biochim Biophys Acta 1786: 41-8.
    Lupski J. R. (1998). Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14: 417-22.
    Lyon M. F. (1998). X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80: 133-7.
    Makalowski W. (2000). Genomic scrap yard: how genomes utilize all that junk. Gene 259: 61-7.
    Marsit C. J., Kim D. H., Liu M., Hinds P. W., Wiencke J. K., Nelson H. H., and Kelsey K. T. (2005). Hypermethylation of RASSF1A and BLU tumor suppressor genes in non-small cell lung cancer: implications for tobacco smoking during adolescence. Int J Cancer 114: 219-23.
    Mattick J. S. (2003). Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 25: 930-9.
    Mattick J. S., and Makunin I. V. (2006). Non-coding RNA. Hum Mol Genet 15 Spec No 1: R17-29.
    McDermid H. E., and Morrow B. E. (2002). Genomic disorders on 22q11. Am J Hum Genet 70: 1077-88.
    Miller G., El-Guindy A., Countryman J., Ye J., and Gradoville L. (2007). Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res 97: 81-109.
    Mishra B. (2008 ). Transposable Element-driven Duplications during Hominoid Genome Evolution. Encyclopedia of Life Sciences
    Monk M. (1995). Epigenetic programming of differential gene expression in development and evolution. Dev Genet 17: 188-97.
    Morrison T. E., Mauser A., Wong A., Ting J. P., and Kenney S. C. (2001). Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity 15: 787-99.
    Murono S., Inoue H., Tanabe T., Joab I., Yoshizaki T., Furukawa M., and Pagano J. S. (2001). Induction of cyclooxygenase-2 by Epstein-Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc Natl Acad Sci U S A 98: 6905-10.
    Nan X., Tate P., Li E., and Bird A. (1996). DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 16: 414-21.
    Narayan A., Ji W., Zhang X. Y., Marrogi A., Graff J. R., Baylin S. B., and Ehrlich M. (1998). Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer 77: 833-8.
    Nguyen C. T., Weisenberger D. J., Velicescu M., Gonzales F. A., Lin J. C., Liang G., and Jones P. A. (2002). Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2'-deoxycytidine. Cancer Res 62: 6456-61.
    Niller H. H., Wolf H., and Minarovits J. (2009). Epigenetic dysregulation of the host cell genome in Epstein-Barr virus-associated neoplasia. Semin Cancer Biol 19: 158-64.
    Nowell P. C., and Hungerford D. A. (1960). Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25: 85-109.
    Onyango P., Jiang S., Uejima H., Shamblott M. J., Gearhart J. D., Cui H., and Feinberg A. P. (2002). Monoallelic expression and methylation of imprinted genes in human and mouse embryonic germ cell lineages. Proc Natl Acad Sci U S A 99: 10599-604.
    Pace J. K., 2nd, and Feschotte C. (2007). The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17: 422-32.
    Paz M. F., Avila S., Fraga M. F., Pollan M., Capella G., Peinado M. A., Sanchez-Cespedes M., Herman J. G., and Esteller M. (2002). Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res 62: 4519-24.
    Pereira A. C., Correa R. F., Mota G. F., Kim C. A., Mesquita S. F., and Krieger J. E. (2003). High specificity PCR screening for 22q11.2 microdeletion in three different ethnic groups. Braz J Med Biol Res 36: 1359-65.
    Pettenati M. J., Rao P. N., Phelan M. C., Grass F., Rao K. W., Cosper P., Carroll A. J., Elder F., Smith J. L., Higgins M. D., and et al. (1995). Paracentric inversions in humans: a review of 446 paracentric inversions with presentation of 120 new cases. Am J Med Genet 55: 171-87.
    Pfister S., Schlaeger C., Mendrzyk F., Wittmann A., Benner A., Kulozik A., Scheurlen W., Radlwimmer B., and Lichter P. (2007). Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res 35: e51.
    Phokaew C., Kowudtitham S., Subbalekha K., Shuangshoti S., and Mutirangura A. (2008). LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res 36: 5704-12.
    Pike B. L., Greiner T. C., Wang X., Weisenburger D. D., Hsu Y. H., Renaud G., Wolfsberg T. G., Kim M., Weisenberger D. J., Siegmund K. D., Ye W., Groshen S., Mehrian-Shai R., Delabie J., Chan W. C., Laird P. W., and Hacia J. G. (2008). DNA methylation profiles in diffuse large B-cell lymphoma and their relationship to gene expression status. Leukemia 22: 1035-43.
    Plagnol V., Uz E., Wallace C., Stevens H., Clayton D., Ozcelik T., and Todd J. A. (2008). Extreme clonality in lymphoblastoid cell lines with implications for allele specific expression analyses. PLoS One 3: e2966.
    Plath K., Mlynarczyk-Evans S., Nusinow D. A., and Panning B. (2002). Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36: 233-78.
    Qu G., Dubeau L., Narayan A., Yu M. C., and Ehrlich M. (1999a). Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res 423: 91-101.
    Qu G. Z., Grundy P. E., Narayan A., and Ehrlich M. (1999b). Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet 109: 34-9.
    Raab-Traub N. (2002). Epstein-Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12: 431-41.
    Ragoczy T., and Miller G. (1999). Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 73: 9858-66.
    Rauch A., Zink S., Zweier C., Thiel C. T., Koch A., Rauch R., Lascorz J., Huffmeier U., Weyand M., Singer H., and Hofbeck M. (2005). Systematic assessment of atypical deletions reveals genotype-phenotype correlation in 22q11.2. J Med Genet 42: 871-6.
    Richard G. F., Kerrest A., and Dujon B. (2008). Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72: 686-727.
    Roberts S. E., and Thomas N. S. (2003). A quantitative polymerase chain reaction method for determining copy number within the Prader-Willi/Angelman syndrome critical region. Clin Genet 64: 76-8.
    Rodriguez J., Vives L., Jorda M., Morales C., Munoz M., Vendrell E., and Peinado M. A. (2008). Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 36: 770-84.
    Rollins R. A., Haghighi F., Edwards J. R., Das R., Zhang M. Q., Ju J., and Bestor T. H. (2006). Large-scale structure of genomic methylation patterns. Genome Res 16: 157-63.
    Roman-Gomez J., Jimenez-Velasco A., Agirre X., Cervantes F., Sanchez J., Garate L., Barrios M., Castillejo J. A., Navarro G., Colomer D., Prosper F., Heiniger A., and Torres A. (2005). Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24: 7213-23.
    Rowold D. J., and Herrera R. J. (2000). Alu elements and the human genome. Genetica 108: 57-72.
    Salamon D., Takacs M., Ujvari D., Uhlig J., Wolf H., Minarovits J., and Niller H. H. (2001). Protein-DNA binding and CpG methylation at nucleotide resolution of latency-associated promoters Qp, Cp, and LMP1p of Epstein-Barr virus. J Virol 75: 2584-96.
    Sandoval Guerrero K., Revilla Vazquez A., Segura-Pacheco B., and Duenas-Gonzalez A. (2005). Determination of 5-methyl-cytosine and cytosine in tumor DNA of cancer patients. Electrophoresis 26: 1057-62.
    Scheifele L. Z., Cost G. J., Zupancic M. L., Caputo E. M., and Boeke J. D. (2009). Retrotransposon overdose and genome integrity. Proc Natl Acad Sci U S A 106: 13927-32.
    Schinke M., and Izumo S. (2001). Deconstructing DiGeorge syndrome. Nat Genet 27: 238-40.
    Selmi C., Invernizzi P., and Gershwin M. E. (2006). The X chromosome and systemic sclerosis. Curr Opin Rheumatol 18: 601-5.
    Seyfert V. L., McMahon S. B., Glenn W. D., Yellen A. J., Sukhatme V. P., Cao X. M., and Monroe J. G. (1990). Methylation of an immediate-early inducible gene as a mechanism for B cell tolerance induction. Science 250: 797-800.
    Shaikh T. H., Kurahashi H., and Emanuel B. S. (2001). Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: an update and literature review. Genet Med 3: 6-13.
    Shaikh T. H., Kurahashi H., Saitta S. C., O'Hare A. M., Hu P., Roe B. A., Driscoll D. A., McDonald-McGinn D. M., Zackai E. H., Budarf M. L., and Emanuel B. S. (2000). Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum. Mol. Genet. 9: 489-501.
    Sharp A. J., Hansen S., Selzer R. R., Cheng Z., Regan R., Hurst J. A., Stewart H., Price S. M., Blair E., Hennekam R. C., Fitzpatrick C. A., Segraves R., Richmond T. A., Guiver C., Albertson D. G., Pinkel D., Eis P. S., Schwartz S., Knight S. J., and Eichler E. E. (2006). Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 38: 1038-42.
    Shattuck T. M., Westra W. H., Ladenson P. W., and Arnold A. (2005). Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N Engl J Med 352: 2406-12.
    Siu L. L., Chan J. K., Wong K. F., and Kwong Y. L. (2002). Specific patterns of gene methylation in natural killer cell lymphomas : p73 is consistently involved. Am J Pathol 160: 59-66.
    Sixbey J. W., Vesterinen E. H., Nedrud J. G., Raab-Traub N., Walton L. A., and Pagano J. S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306: 480-3.
    Slotkin R. K., and Martienssen R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272-85.
    Smiraglia D. J., Rush L. J., Fruhwald M. C., Dai Z., Held W. A., Costello J. F., Lang J. C., Eng C., Li B., Wright F. A., Caligiuri M. A., and Plass C. (2001). Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet 10: 1413-9.
    Stankiewicz P., and Lupski J. R. (2002). Genome architecture, rearrangements and genomic disorders. Trends Genet 18: 74-82.
    Sulewska A., Niklinska W., Kozlowski M., Minarowski L., Naumnik W., Niklinski J., Dabrowska K., and Chyczewski L. (2007). Detection of DNA methylation in eucaryotic cells. Folia Histochem Cytobiol 45: 315-24.
    Sun H. S., Su I. J., Lin Y. C., Chen J. S., and Fang S. Y. (2003). A 2.6 Mb interval on chromosome 6q25.2-q25.3 is commonly deleted in human nasal natural killer/T-cell lymphoma. Br J Haematol 122: 590-9.
    Sverdlov E. D. (1998). Perpetually mobile footprints of ancient infections in human genome. FEBS Lett 428: 1-6.
    Symer D. E., Connelly C., Szak S. T., Caputo E. M., Cost G. J., Parmigiani G., and Boeke J. D. (2002). Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110: 327-38.
    Takai D., and Jones P. A. (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99: 3740-5.
    Takai D., Yagi Y., Habib N., Sugimura T., and Ushijima T. (2000). Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis. Jpn J Clin Oncol 30: 306-9.
    Tao Q., and Robertson K. D. (2003). Stealth technology: how Epstein-Barr virus utilizes DNA methylation to cloak itself from immune detection. Clin Immunol 109: 53-63.
    Thiel C. T., Kraus C., Rauch A., Ekici A. B., Rautenstrauss B., and Reis A. (2003). A new quantitative PCR multiplex assay for rapid analysis of chromosome 17p11.2-12 duplications and deletions leading to HMSN/HNPP. Eur J Hum Genet 11: 170-8.
    Thompson M. P., and Kurzrock R. (2004). Epstein-Barr virus and cancer. Clin Cancer Res 10: 803-21.
    Tosato G., and Cohen J. I. (2007). Generation of Epstein-Barr Virus (EBV)-immortalized B cell lines. Curr Protoc Immunol Chapter 7: Unit 7 22.
    Toyota M., Suzuki H., Yamashita T., Hirata K., Imai K., Tokino T., and Shinomura Y. (2009). Cancer epigenomics: implications of DNA methylation in personalized cancer therapy. Cancer Sci 100: 787-91.
    Tsai C. N., Tsai C. L., Tse K. P., Chang H. Y., and Chang Y. S. (2002). The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A 99: 10084-9.
    Turek-Plewa J., and Jagodzinski P. P. (2005). The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10: 631-47.
    Ulaner G. A., Vu T. H., Li T., Hu J. F., Yao X. M., Yang Y., Gorlick R., Meyers P., Healey J., Ladanyi M., and Hoffman A. R. (2003). Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site. Hum Mol Genet 12: 535-49.
    Valero M. C., de Luis O., Cruces J., and Perez Jurado L. A. (2000). Fine-scale comparative mapping of the human 7q11.23 region and the orthologous region on mouse chromosome 5G: the low-copy repeats that flank the Williams-Beuren syndrome deletion arose at breakpoint sites of an evolutionary inversion(s). Genomics 69: 1-13.
    Velinov M., and Jenkins E. C. (2003). PCR-based strategies for the diagnosis of Prader-Willi/Angelman syndromes. Methods Mol Biol 217: 209-16.
    Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A., Gocayne J. D., Amanatides P., Ballew R. M., Huson D. H., Wortman J. R., Zhang Q., Kodira C. D., Zheng X. H., Chen L., Skupski M., Subramanian G., Thomas P. D., Zhang J., Gabor Miklos G. L., Nelson C., Broder S., Clark A. G., Nadeau J., McKusick V. A., Zinder N., Levine A. J., Roberts R. J., Simon M., Slayman C., Hunkapiller M., Bolanos R., Delcher A., Dew I., Fasulo D., Flanigan M., Florea L., Halpern A., Hannenhalli S., Kravitz S., Levy S., Mobarry C., Reinert K., Remington K., Abu-Threideh J., Beasley E., Biddick K., Bonazzi V., Brandon R., Cargill M., Chandramouliswaran I., Charlab R., Chaturvedi K., Deng Z., Di Francesco V., Dunn P., Eilbeck K., Evangelista C., Gabrielian A. E., Gan W., Ge W., Gong F., Gu Z., Guan P., Heiman T. J., Higgins M. E., Ji R. R., Ke Z., Ketchum K. A., Lai Z., Lei Y., Li Z., Li J., Liang Y., Lin X., Lu F., Merkulov G. V., Milshina N., Moore H. M., Naik A. K., Narayan V. A., Neelam B., Nusskern D., Rusch D. B., Salzberg S., Shao W., Shue B., Sun J., Wang Z., Wang A., Wang X., Wang J., Wei M., Wides R., Xiao C., Yan C., et al. (2001). The sequence of the human genome. Science 291: 1304-51.
    Walker P. M. (1971). Origin of satellite DNA. Nature 229: 306-8.
    Weaver R. F. (2005). "Molecular Biology.," McGraw-Hill press,.
    Whitfield M. L., Sherlock G., Saldanha A. J., Murray J. I., Ball C. A., Alexander K. E., Matese J. C., Perou C. M., Hurt M. M., Brown P. O., and Botstein D. (2002). Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13: 1977-2000.
    Wong N., Lam W. C., Lai P. B., Pang E., Lau W. Y., and Johnson P. J. (2001). Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol 159: 465-71.
    Yates P. A., Burman R. W., Mummaneni P., Krussel S., and Turker M. S. (1999). Tandem B1 elements located in a mouse methylation center provide a target for de novo DNA methylation. J Biol Chem 274: 36357-61.
    Yoshizaki T., Sato H., Furukawa M., and Pagano J. S. (1998). The expression of matrix metalloproteinase 9 is enhanced by Epstein-Barr virus latent membrane protein 1. Proc Natl Acad Sci U S A 95: 3621-6.
    Youings S., Ellis K., Ennis S., Barber J., and Jacobs P. (2004). A study of reciprocal translocations and inversions detected by light microscopy with special reference to origin, segregation, and recurrent abnormalities. Am J Med Genet A 126A: 46-60.
    Young L. S., and Murray P. G. (2003). Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22: 5108-21.
    Young L. S., and Rickinson A. B. (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4: 757-68.
    Zhang Y., Ohyashiki J. H., Takaku T., Shimizu N., and Ohyashiki K. (2006). Transcriptional profiling of Epstein-Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection. Br J Cancer 94: 599-608.
    Zhou Y., and Mishra B. (2005). Quantifying the mechanisms for segmental duplications in mammalian genomes by statistical analysis and modeling. Proc Natl Acad Sci U S A 102: 4051-6.

    下載圖示 校內:2015-02-11公開
    校外:2015-02-11公開
    QR CODE