簡易檢索 / 詳目顯示

研究生: 鍾文泰
Chung, Wen-Tai
論文名稱: 車輛排氣管之流場與噪音分析
Analysis of the Flow Field and Noise-Generation Mechanism inside and near the exit of a Vehicle's Exhaust Pipe
指導教授: 梁勝明
Liang, Shen-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 148
中文關鍵詞: 噪音爆炸波聲波
外文關鍵詞: Blast Wave, Sound Wave, Noise
相關次數: 點閱:96下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究的重點,著重於在車輛排氣管尾端所引發出來的流場與噪音分析,汽機車排氣管所排放的廢氣是一種具有脈衝式爆炸波的流體,它是非穩態及非線性的,不易以傳統的線性聲學理論來預測的。此脈衝式的流體流過排氣管出口之後會有一系列複雜的震波繞射現象發生,例如:繞射震波、渦漩的和膨脹波反射等現象。我們藉由高階的軸對稱尤拉與那維亞史託克解子,求解這些由震波與渦漩交互作用所引發出來的複雜的現象。為了節省計算的時間,我們在高階解子內加入了平行運算的技術。在數值方法上,使用由Jiang and Shu兩人所提出的五階準確度的加權基本不震盪法做為空間差分的方法,在時間的積分上則是採用四階準確度的 Runge-Kutta 方法。
    為了有效降低在排氣管口處由震波與渦漩交互作用所產生的噪音,我們設計了一個尾部平滑彎曲且漸擴的排氣管來代替傳統的直管排氣管。在文章中,詳細地研究排氣管下游的流場與聲場,並分析其噪音等級。當排氣管流場達到假穩態時,發現聲波會朝著某些主要的方向傳遞。在直管的例子中,最主要的聲波是朝著六十度角方向傳遞;在曲管的例子中,最主要的聲波是朝著零度角方向傳遞。
    為了去估算脈衝式流體對排氣管流場和噪音的影響,我們在排氣管的入口處設置一週期性的入口邊界條件,這週期性的派衝波是經由實驗量測所獲得的,所量測的是三陽如意125機車,在測量時車子引擎的轉速是固定在每分鐘五千轉,車身是靜止不動。數值模擬的結果顯示,這週期性的入口脈衝波對於排氣管下游的流場及聲場有很大的影響,這些影響包括渦漩環的大小、渦漩中心的渦量值以及噪音量的等級。此外,為了考慮人耳對於聲音的響應頻率,A加權的噪音等級方法是被應用在分析噪音等級上。最後,對實驗量測的聲壓等級數據和數值模擬的聲壓等級值做比較。結果顯示,在直管例子中最大A加權的噪音等級誤差是0.8dBA;在曲管例子中最大A加權的噪音等級誤差是1.4dBA。再對最小噪音標準值做比較,結果顯示,在直管例子中最小A加權的噪音等級誤差是1.7dBA;在曲管例子中最小A加權的噪音等級誤差是0.9dBA。結果證實尾部彎曲且漸擴外形的排氣管確實達到縮小排氣管下游噪音範圍。

    The present study focuses on the noise problem associated with a vehicle’s exhaust pipe. A pulsated flow with weak pulsating blast waves from a vehicle engine is discharged out of the vehicle’s exhaust pipe. The discharged pulsated flow and the induced shock/vortex interactions that result in radiated noise are numerically investigated by the axi-symmetric Euler/Navier-Stokes solver with the parallel computational technology. The numerical method used is a fifth-order weighted essentially non-oscillation scheme of Jiang and Shu for spatial discretization and a fourth-order non-TVD Runge-Kutta method for time integration.
    In order to effectively reduce the radiated noise due to shock/vortex interactions near the pipe exit, the pipe shape near the exit is redesigned by using a smoothed curved, expanding shape near the pipe exit, instead of the traditional straight shape. The detailed flow field downstream of the pipe and its sound pressure level are studied. When the flow field has become a quasi-steady state, the major propagation direction of sound wave for the straight-pipe case is found in the 60° direction, which is different from the 0° direction for the curved-pipe case. Moreover, noise produced by the straight- and curved-shape pipe with periodic pulsating blast waves are analyzed and compared. The periodic pulsating wave is obtained by fitting the measured pressure data from a motorcycle exhaust pipe at an engine speed of 5000rpm at an idle condition. It is found that the periodic pulsating waves can greatly influence the downstream flow and sound fields such as the vortex–ring size, vortex-center vorticity and sound pressure level (SPL). In consideration of the frequency response of the human ear, the A-scale SPL method is applied to analyze sound pressure level. Experimental and simulated sound pressure levels are computed and compared. The results of sound pressure levels for experiment and simulation show that their absolute error in the maximum A-weighting SPL is 0.8dBA for the curved-pipe case and 1.4dBA for the straight-pipe case. Moreover, their absolute error in the minimum A-weighting SPL is 1.7dBA for the curved-pipe case and 0.9dBA for the straight-pipe case. It is proved that the partially curved, expanding pipe can reduce the noise region downstream of the pipe.

    CONTENTS ABSTRACT ............................................ i CONTENTS ............................................ iii LIST OF TABLES ...................................... vi LIST OF FIGURES ..................................... vii NOMENCLATURES ....................................... x Chapter I INTRODUCTION 1 1.1 Background and Motivation ....................... 1 1.2 Literature Survey ............................... 1 1.2.1 Shock, Blast and Noise discharged form an open-ended duct ................................................ 1 1.2.2 Shock/vortex interaction ...................... 4 1.2.3 The computation of sound field and noise analysis 7 1.2.4 Noise reduced by modifying the sharp of open-ended pipe ................................................ 8 1.3 Objectives ...................................... 10 II MATHEMATICAL FORMULATION ............................12 2.1 Compressible Navier-Stokes Equations ............ 12 2.2 Generalized Curvilinear Coordinates ............. 13 2.3 Vorticity Transport Equation .................... 17 2.4 Definition of Acoustics and Noise Level ......... 18 2.4.1 Acoustics Defined ............................. 18 2.4.2 Noise Level Defined ........................... 19 III NUMERICAL MEHOD ................................. 22 3.1 Introduction .................................... 22 3.2 WENO Scheme ..................................... 23 3.3 By computing weights for Euler Systems .......... 28 3.4 Time Discretization ............................. 29 3.5 Choice of Time Step ............................. 29 3.6 Boundary Conditions ............................. 30 3.6.1 Wall Boundary Condition ....................... 30 3.6.1.1 Inviscid Wall Boundary Condition ............ 30 3.6.1.2 Viscous Wall Boundary Condition ............. 31 3.6.2 Symmetric Boundary Condition .................. 31 3.6.3 Nonreflecting Boundary Condition .............. 31 IV Parallel Computation and Experimental Equipment .. 33 4.1 PC Cluster ...................................... 33 4.1.1 Setup of hardware ............................. 33 4.1.2 Software ...................................... 33 4.2 Installation process of PC Cluster .............. 34 4.2.1 Installation of Linux Fedora Core 6 for cluster 34 4.2.2 Setup of Linux Fedora Core 6 for PC Cluster ... 34 4.2.3 Installation of Intel Fortran Compiler ........ 36 4.2.4 Installation of LAM/MPI ....................... 36 4.2.5 Setup of environmental variables .............. 37 4.3 Experimental equipment and technique ............ 38 4.3.1 Experimental vehicle .......................... 38 4.3.2 Measurement of sound pressure and sound pressure level ............................................... 38 V RESULTS AND DISCUSSIONS 39 5.1 Validation of the Parallelized WENO Scheme ...... 39 5.1.1 Case I: A Planar Shock Wave Diffracted around a Convex Corner ....................................... 39 5.1.2 Case II: Investigation of Vortex/Shock Interaction ......................................... 40 5.1.3 Study of Grid-Independent Solution ............ 42 5.2 The base flow fields in a straight pipe and in a curved pipe ......................................... 42 5.2.1 Physical Problem .............................. 42 5.2.2 Flow analysis for a jet flow without pulsating waves in a straight pipe .................................. 43 5.2.3 Analysis for a jet flow without pulsating waves in a curved pipe ......................................... 46 5.3 Analysis of ring vortices in the straight and curved pipes ............................................... 48 5.3.1 Ring vortices induced by normal shock past through the pipe exit ....................................... 48 5.3.2 Analysis for flow without pulsating waves in a straight pipe ....................................... 49 5.3.3 Analysis for flow without pulsating waves in a curved pipe ......................................... 50 5.4 Noise analysis of base flow in straight and curved pipes ............................................... 52 5.4.1 Noise analysis for an exhaust flow without pulsating waves in a straight pipe ............................ 52 5.4.2 Noise analysis for an exhaust flow without pulsating waves in a curved pipe ......................................... 55 5.5 Analysis of flow field and noise for an exhaust flow with pulsating waves in a straight pipe and in a curved pipe ................................................ 56 5.5.1 Statement of imposed pulsating waves .......... 56 5.5.2 Noise analysis for the exhaust pipe flow with pulsating waves in a straight pipe .................. 56 5.5.3 Noise analysis for the exhaust pipe flow with pulsating waves in a curved pipe .................... 57 5.5.4 Comparison of simulated and experimental results for the exhaust pipe flow with pulsating waves in a straight pipe ................................................ 58 VI CONCLUSIONS AND SUGGESTIONS ...................... 60 6.1 Conclusions ..................................... 60 6.2 Suggestions ..................................... 62 REFERENCES .......................................... 63 APPENDICES .......................................... 69 TABLES .............................................. 73 FIGURES ............................................. 80 VITA………………………………… 148

    1. Abate, G. and Shyy, W.,“Dynamic Structure of Confined Shocks Undergoing Sudden Expansion,"Progress in Aerospace Sciences, Vol. 38, pp. 23-42, 2002.
    2. Birch, R. S., Gerges, S. N. and Vergara, E. F.,“Design of a Pulse Generator and Shock Tube for Measuring Hearing Protector Attenuation of High-Amplitude Impulsive Noise,” Applied Acoustics, Vol. 64, pp. 269–286, 2003.
    3. Brouillette, M., Tardif, J. and Gauthier, E., “Experimental Study of Shock-Generated Vortex Ring,” Proc 19th ISSW, Marseille, Springer, pp. 361-366, 1995.
    4. Chatterjee, A., “Shock Wave Deformation in Shock-Vortex Interactions,” Shock Waves, Vol. 9, pp. 95-105, 1999.
    5. Chen, H. and Liang, S. M., “Planar Blast/Vortex Interaction and Sound Generation,” AIAA J., Vol. 40, No. 11, pp. 2298-2304, 2002.
    6. Demir, A. and Rienstra, S. W., “Sound Radiation from an Annular Duct with Jet Flow and A Lined Centerbody,” 12th AIAA/CEAS Aeroacoustics Conference, 2006.
    7. Endo, M. and Iwamoto, J., “Numerical Analysis of Pulsatile Jet form Exhaust Pipe,” JSAE Review, Vol. 20, pp. 243-249, 1999.
    8. Endo, M., Futagami, Y. and Iwamoto, J., “Relation between the Flow Pattern Downstream of Duct and the Noise,” JSAE Review, Vol. 21, pp. 125-132, 2000.
    9. Guichard, L., Vervisch, L. and Domingo, P., “Two-dimensional Weak Shock-Vortex Interaction in a Mixing Zone,” AIAA J., Vol. 33, pp. 1797-1802,1995.
    10. Gabard, G. and Astley, R. J., “Theoretical Model for Sound Radiation from Annular Jet Pipes: Far- and Near-Field Solutions,” J. Fluid Mech, Vol. 549, pp. 315-341, 2006.
    11. Harten, A., Engquist, B., Osher S. and Charkravarthy, S.,“Uniformly High-Order Accurate Essentially Non-Oscillatory Schemes III,” J. Comput. Phys., Vol. 71, pp. 231-303, 1987.
    12. Hillier, R., “Computation of Shock Wave Diffraction at a Ninety-Degree Convex Edge,” Shock Waves, Vol. 1, pp. 89-98, 1991.
    13. Higashiyama, J. and Iwamoto, J., “Experimental Study of Exhaust Noise Generated by Pulsating Flow Downstream of Pipe End,” JSAE Review, Vol. 20, pp. 73-79, 1999.
    14. Inoue, O., “Propagation of Sound Generated by Weak Shock-Vortex Interaction,” Phys. Fluids, Vol. 12, No. 5, pp. 1258-1261, 2000.
    15. Inoue, O. and Hattori, Y., “Sound Generation by Shock-Vortex Interaction,” J. Fluid Mech., Vol. 380, pp. 81-116, 1999.
    16. Inoue, O., Hattori, Y. and Sasaki, T., “Sound Generation by Coaxial Collision of Two Vortex Rings,” J. Fluid Mech., Vol. 424, pp. 327-365, 2000.
    17. Inoue, O. and Takahashi, Y., “Successive Generation of Sounds by Shock-Strong Vortex Interaction,” Phys. Fluids., Vol. 12, No. 12, 2000.
    18. Jiang, G.-S. and Shu, C.-W., “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys., Vol. 126, No. 1, pp. 202-228, 1996.
    19. Jones, A. D., “Modelling the Exhaust Noise Radiated from Reciprocating Internal Combustion Engines–A Literature Review,” Noise Control Eng. J., Vol. 23, No. 1, pp.12-31, 1984.
    20. Kim, H.-D., Kweon, Y.-H., Setoguchi, T., “A Study of the Weak Shock Wave Propagating through an Engine Exhaust Silencer System”, Journal of Sound and Vibration, Vol. 275, pp.893–915, 2004.
    21. Kim, H. D. and Setoguchi, T., “Study of the Discharge of Weak Shocks from an Open end of a Duct,” J. Sound and Vibration, Vol. 226, No. 5, pp. 1011-1028, 1999.
    22. Kim, J. T., Kim, Y. M., Maeng, J. S., Lyu, M. S. and Ku, Y. G., “Unstructured Grid Finite Volume Analysis for Acoustic and Characteristics in Exhaust Silencer Systems,” Numerical Heat Transfer, Part A, Vol. 30. No. 5, pp. 439-457, 1996.
    23. Kleine, H., Retzerfeld, E. and Grönig, H., “Shock Wave Diffraction at a Ninety degree Corner,”Computational Fluid Dynamic Journal, Vol. 12, No. 2, pp. 142-158, 2003.
    24. Lee, I. C. and Lee, D. J., “Numerical Simulation of Supersonic Screech Tone Noise Using High-Order, High-Resolution Optimized Compact Scheme,”PARALLEL CFD Conference, pp.57-62, 2006.
    25. Liang, S. M., Chung, W. T., Chen H. and Shyu, S. H., “Numerical Investigation of Reflected Shock/Vortex Interaction near an Open-Ended Duct,” AIAA J., Vol.
    43, No. 2, pp. 349-356, 2005.
    26. Liang, S. M. and Chung W. T.,” Numerical Study Of Instability And Small Vortices Along A Slipstream,” Computational Fluid Dynamics Journal,”Vol.13, No. 3, 2004, pp.524-532.
    27. Lighthill, M. J., “The Diffraction of Blast. I,” Proc. Roy. Soc. A., Vol. 198, pp. 454-470, 1949..
    28. Meadows, K. R., “A Study of Fundamental Shock Noise Mechanisms,” NASA Technical Paper 3605, 1997.
    29. Pulliam, T. H., “Euler and Thin Layer Navier-Stokes Codes: ARC2D, ARC3D,”Notes for COMPUTATIONAL FLUID DYNAMICS USER’S WORKSHOP, The University of Tennessee Space Institute Tullahoma, Tennessee, March 12-16, 1984.
    30. Sathyanarayana, Y. and Munjal, M. L., “A hybrid approach for aeroacoustic analysis of the engine exhaust system,” Applied Acoustics, Vol. 60, pp. 425-450, 2000.
    31. Skews, B. W., “The Perturbed region behind a diffracting Shock Wave,” J. Fluid Mech., Vol. 29, pp. 705-719, 1967.
    32. Skews, B. W. and Erasmus, C., “Interaction of Complex Shock Geometry with a Spiral Vortex,” Proceedings of the Fifth International Workshop on Shock Wave/Vortex Interaction, Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, 2003.
    33. Shu, C.-W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes,” J. Comput. Phys. Vol. 77, pp. 439-471, 1988.
    34 Shu, C.-W. and Osher, S., “Efficiently Implementation of the Essentially Non-Oscillatory Shock-Capturing Schemes II,” J. Comput. Phys. Vol. 83, pp. 32-78, 1989.
    35 Sun, M. and Takayama, K., “The Formation of a Secondary Shock Wave behind a Shock Wave Diffracting at a Convex Corner,” Shock Waves, Vol. 7, pp. 287-295, 1997.
    36 Sun, M. and Takayama, K., “Vorticity Production in Shock Diffraction,” J. Fluid Mech., pp. 237-256 , 2003.
    37 Sun, M. and Takayama, K., “A Note on Numerical Simulation of Vortical Structures in Shock Diffraction,” Shock Waves, Vol. 13, pp. 25-32, 2003.
    38 Szumoswki, A., Sobieraj, G., Selerowicz, W. and Piechna, J., “Starting Jet-Wall Interaction,” J. Sound and Vibration, Vol. 232. No. 4, pp. 695-702, 2000.
    39 Takayama, K. and Inoue, O., “Shock Wave Diffraction over a 90 Degree Sharp Corner-Posters Presented at 18th ISSW,” Shock Waves, Vol. 1, pp. 301-312, 1991.
    40 Thompson, K. W., “Time Dependent Boundary Conditions for Hyperbolic Systems,” J. Comp. Phys., Vol. 68, No. 1, pp. 1-24, 1987.
    41 Thompson, K. W., “Time Dependent Boundary Conditions for Hyperbolic Systems II,” J. Comp. Phys., Vol. 89, No. 2, pp. 439-461, 1990.
    42 Thorpe, S. A., “Experiments on the Instability of Stratified Shear Layers,” J. Fluid Mech., Vol.39, 1969, pp. 25-48.
    43. Wang, S. F., “Experimental Measurements and Numerical Simulation of Pulsating Flow in a Vehicle’s Exhaust Pipe,” Master Thesis, National Cheng Kong University, Tainan, Taiwan, 2005.
    44 Whitham, G. B., “A New Approach to Problems of Shock Dynamics. Part 1. Two-Dimensional Problems,” J. Fluid Mech., Vol.2, pp. 145-171, 1957.
    45 Whitham, G. B., “A New Approach to Problems of Shock Dynamics. Part 2. Three-Dimensional Problems,” J. Fluid Mech., Vol. 5, pp. 369-386, 1959.
    46 Yang, J., Kubota, T., and Zukoski, E. E., “An Analysis and Computational Investigation of Shock-Induced Vortical Flows,” AIAA Paper 92-0316, 1992.
    47 Yang, J., Onodera, O., and Takayama, K., “Holographic Interferometric Investigation of Shock Wave Diffraction,” Visualization Society of Japan, Vol. 14, Supplement No. 1, pp. 85-88, 1994.
    48 Yang, J., “Experimental and Theoretical Study of Weak Shock Wave,” Ph.D. Thesis, Tohoku University, Seudai ,Japan, 1995.
    49 Yates, L. A., “Images Constructed from Computed Flow Fields,” AIAA J., Vol. 31, No. 10, pp. 1877-1884, 1993.
    50 Zhang, S. Y., “Numerical Simulation and Flow Field Analysis of a Car Exhaust Pipe,” Master Thesis, National Cheng Kong University, Tainan, Taiwan, 2003.

    下載圖示 校內:2008-06-27公開
    校外:2008-06-27公開
    QR CODE