簡易檢索 / 詳目顯示

研究生: 陳美彧
Tan, Mei-Yu
論文名稱: 以室內土柱試驗探討土壤入滲行為監測
Soil Infiltration Monitoring in Laboratory Soil Column Test
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 85
中文關鍵詞: 入滲行為一維土柱入滲試驗電容式含水量感測器瞬時剖面法
外文關鍵詞: infiltration, one-dimensional soil column infiltration test, capacitive soil moisture sensor, instantaneous profile method
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在驗證電容式土壤含水量感測器於入滲監測中的準確性,並以荷重計量測值作為對照基準。試驗採用垂直土柱進行試驗,土柱表面維持固定水頭3.9 cm,以模擬一維入滲土柱行為。電容式含水量感測器分別安裝距離土表面於33、58及83 cm深度,利用剖面法推估入滲量,而實際入滲量使用荷重計進行量測,兩者感測器同步量測記錄。試驗結果顯示,三次重複試驗中入滲速率皆呈現初期速率較高隨時間趨於穩定,最終入滲速率在2.3×10⁻³ cm/s 至2.4×10⁻³ cm/s。電容式含水量感測器能呈現體積含水量剖面隨深度由上至下逐層反應的現象。在各層電容式含水量感測器體積含水量值達穩定,用該時間推估入滲量,並與該時間荷重計計算之入滲量進行比較,結果顯示電容式含水量感測器誤差為36.8%。整體而言,雖然電容式含水量感測器會有低估入滲量的情形,但其還是可以適切觀察到土壤入滲行為。

    This study aims to evaluate the accuracy of capacitive soil moisture sensors in monitoring infiltration, with load cell measurements serving as the reference benchmark. A vertical soil column was used for the infiltration test, during which the soil surface was maintained at a constant ponding head of 3.9 cm to simulate one-dimensional infiltration behavior. Capacitive soil moisture sensors were installed at depths of 33, 58, and 83 cm below the soil surface, and the profile method was employed to estimate infiltration, while actual infiltration was determined from load cell measurements, with both sensors recording data simultaneously. The experimental results showed that in all three replicated tests, infiltration rates initially exhibited relatively high values and gradually approached a steady state, with the final infiltration rate ranging from 2.3 × 10⁻³ cm/s to 2.4 × 10⁻³ cm/s. The capacitive soil moisture sensors successfully captured the sequential wetting response along the soil profile from top to bottom. When the volumetric water content measured by each sensor reached a stable value, the corresponding time was used to estimate the infiltration depth, which was then compared with that derived from load cell measurements; the results indicated that the estimation error of the capacitive sensors was (36.8 %). Overall, although capacitive soil moisture sensors tended to underestimate infiltration amounts, they were still effective in capturing the infiltration process in soils.

    摘要i ABSTRACTii 誌謝viii 目錄ix 表目錄xii 圖目錄xiii 第一章 緒論1 1-1 研究背景與動機1 1-2 研究目的與方法1 1-3 論文架構2 第二章 文獻回顧4 2-1 入滲行為4 2-1-1 土壤入滲的行為5 2-1-2 降雨強度對入滲之影響6 2-1-3 土壤總吸力7 2-2 入滲量評估方法8 2-2-1 Horton法8 2-2-2 現地試驗方法8 2-3 水力傳導係數10 2-3-1 現地試驗方法10 2-3-2 室內試驗11 2-4 含水量監測方法回顧12 2-4-1 烘乾法12 2-4-2 中子濕度計NMM13 2-4-3 電容式含水量感測器13 2-4-4 時域反射技術TDR式感測器13 2-4-5 張力計14 2-4-6 土壤水分張力電阻傳感器14 2-5 瞬時剖面法16 第三章 試驗儀器及感測系統配置18 3-1 試驗配置18 3-1-1 圓形土柱容器19 3-1-2 荷重計20 3-1-3 電容式含水量感測器21 3-2 電子元件介紹22 3-2-1 電容式含水量感測器與荷重計模組23 3-2-2 微控單元24 3-2-3 數據儲存模組25 3-2-4 時鐘模組25 3-2-5 類比數位轉換模組26 3-2-6 電容式含水量感測器模組27 3-2-7 荷重計30 3-2-8 荷重計專用類比數位轉換模組31 第四章 一維入滲土柱試驗流程32 4-1 試驗材料基本物理性質32 4-2 試驗準備33 4-2-1 流量控制33 4-3 試體土柱準備與感測器安裝34 4-4 試驗流程37 第五章 試驗結果與分析39 5-1 入滲試驗結果40 5-1-1 荷重計計算之入滲量40 5-1-2 電容式含水量感測器量測之體積含水量44 5-2 入滲試驗結果分析50 5-2-1 利用瞬時剖面法推估入滲量50 5-2-2 荷重計與電容式含水量感測器比較56 5-2-3 試驗結果的誤差探討61 第六章 結論與建議66 6-1 結論66 6-2 建議66 參考文獻67

    1.王如意與易任(2003),應用水文學,國立編譯館。
    2.毛雅盈(2018),土石壩殼層降雨入滲行為監測及滲流預警值推估,碩士論文,國立成功大學土木工程研究所。
    3.周仕勳等人(2021),公路邊坡場址客製化依時預警系統精進與維護,交通部運輸研究所。
    4.周仕勳(2019),水力力學耦合分析應用於降雨引致土壤邊坡破壞之依時預警,博士論文,國立成功大學土木工程研究所。
    5.蔡義誌(1990),坡地單一土層與複合土層水力傳導度之研究,碩士論文,國立中興大學水土保持學系研究所。
    6.蕭 涵(2017),即時淺層邊坡滑動無線監測模組之研發,碩士論文,國立成功大學土木工程研究所。
    7.ASTM. (2003). “Standard Test Method for Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer” (ASTM D3385-03).
    8.ASTM. (2006). “Standard test method for permeability of granular soils (constant head) ” (ASTM D2434-68).
    9.Bodman, G. B., & Colman, E. A. (1944). “Moisture and energy conditions during downward entry of water into soils.” Soil Science Society of America Journal, 8(1), 116-122.
    10.Chow, V. T., Maidment, D. R. and Mays, L. W. (2000). “Applied hydraulic”, McGraw-Hill, Inc.
    11.Engström, E., Thunvik, R., Kulabako, R., & Balfors, B. (2015). “Water transport, retention, and survival of Escherichia coli in unsaturated porous media: A comprehensive review of processes, models, and factors.” Critical Reviews in Environmental Science and Technology, 45(1), 1-100.
    12.Green, W.H., and Ampt, G.A. (1911). “Studies on soil physics.” Journal of Agricultural Science, 4(1), 1–24.
    13.Hamilton J. M., Daniel D. E., and Olson R. E. (1981). “Measurement of Hydraulic Conductivity of Partially Saturated Soils.” Permeability and Groundwater Contaminant Transport, ASTM Special Tech. Publ. 746, T. F. Zimmie and C. 0. Riggs, Eds., ASTM, pp. 182-196.
    14.Horton, R.E. (1933). “The role of infiltration in the hydrological cycle.” Trans.American Geophys. Union, 14: 446-460.
    15.Johnson, A.I. (1963). “A field method for measurement of infiltration. General Groundwater Techniques.” Washington DC, Geological survey water-supply paper 1544-F,
    16.Kale, R. V., & Sahoo, B. (2011). “Green-Ampt infiltration models for varied field conditions: A revisit.” Water Resources Management, 25(14), 3505-3536.
    17.Klute, A., & Dirksen, C. (1986). “Hydraulic conductivity and diffusivity: Laboratory methods. In A. Klute (Ed.).” Science society of america, methods of soil analysis, part 1: physical and mineralogical methods (2nd ed., pp. 687–734).
    18.Mein, R. G. and Larson, C. L. (1973). “Modeling infiltration during a steady rain.” Water Resources Research, 9(2), 384-394.
    19.Reynolds, W. D., Elrick, D. E., & Topp, G. C. (1986) , “A method for simultaneous in situ measurement in the vadose zone of field-saturated hydraulic conductivity, sorptivity and the conductivity-pressure head relationship.”, Groundwater Monitoring Review, 6(1), 84–95.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE