簡易檢索 / 詳目顯示

研究生: 黃彥斌
Huang, Yen-Pin
論文名稱: 利用特殊濕潤性分離膜連續分離水在油乳液
Continuous Separation of Water-in-Oil Emulsions by Using Membranes with Special Wettability
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 175
中文關鍵詞: 疏水/親油分離膜親水/疏油分離膜水在油乳液連續分離器設計乳液特性膜阻力膜分離通量分離膜特性評估連續分離乳液理論預測
外文關鍵詞: Continuous separation, Water-in-oil emulsion, Hydrophobic/oleophilic membrane, Hydrophilic/oleophobic membrane, Semi-theoretical prediction of oil flow rate
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用新穎的膜分離水在油乳液方法,成功製造了兩種特殊潤濕性質分離膜,疏水/親油膜及親水/水下疏油膜,並合理的設計兩種分離膜結合串聯裝置成功地連續分離水在油乳液,並使用描述膜阻力(RM)及額外膜阻力(RF)的方法對連續分離的過程建立了串聯裝置的模型去解釋及藉由商業化的動態雷射光散射儀(DLS)去分析乳液特性的同時,建立了半理論式去比較油的流率在固定額定流量下分離不同比例水在油乳液,預測油分離結果誤差約在±20 %以內,可見預測成果的成功。最後利用由實驗所建立的半理論式再運用到分離器的設計中,只需將分離器整體放大,一方面能處理更大量乳液且能有效降低分離器所需高度。有別於傳統的批次分離乳液過程,很明顯的連續分離時,在保持高分離效率的同時、流量更大且能穩定地分離。

    Using the innovative membrane separation method for water-in-oil emulsions, two kinds of wetting properties separation membranes, hydrophobic/oleophilic (HO/OI) membrane and hydrophilic/underwater oleophobic (HI/OO) membrane, were successfully fabricated. By combining the two membranes in a tandem device, a continuous separation of water-in-oil emulsions was achieved. A model based on membrane resistance (RM) and additional fouling resistance (RF) were developed a correlation with characterization of emulsions to explain the continuous separation process and establish a semi-theoretical equation, see in Fig. 1 For predicting the oil flow rate at a fixed input flow rate for different water-to-oil ratios, with an error of around ±20%. In contrast to the traditional batch separation process for emulsions, it is evident that continuous separation allows for higher separation efficiency, larger flow rates, and stable operation.

    摘要 I Extended Abstract II 致謝 X 目錄 XI 表目錄 XVI 圖目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目標 2 第二章 文獻回顧 4 2.1 乳液的特性 4 2.2 傳統油水分離方法 6 2.2.1 傳統油水乳液分離方法-物理方法 7 2.2.2傳統油水分離方法-化學方法 8 2.2.3 傳統油水分離方法-機械方法 10 2.2.4 傳統油水分離方法-生物方法 11 2.2.5 傳統油水分離方法-缺陷及未來發展 13 2.3 特殊潤濕性質 14 2.3.1 蓮葉效應 16 2.3.2 特殊濕潤性質表面之特徵 18 2.3.3 楊式方程式 20 2.3.4 溫佐(Wenzel)方程式 22 2.3.5 卡西-巴斯特(Cassie and Baxter)方程式 23 2.3.6 介於溫佐及卡西-巴斯特之過度狀態 24 2.3.7 入侵壓力(Intrusion pressure, IP) 26 2.4 特殊濕潤性質之轉換 27 2.4.1 特殊濕潤性質之轉換---改變溫度 27 2.4.2 特殊濕潤性質之轉換---改變pH 29 2.4.3 特殊濕潤性質之轉換---透過潤濕 30 2.5 新穎油水乳液分離方法 31 2.5.1 批次油在水(O/W)乳液分離 32 2.5.2 批次水在油(W/O)乳液分離 37 2.5.3 連續油水分離 44 2.6 測量油水乳液分離通量及分析 46 2.6.1 透過「實驗」求得通過分離膜通量 46 2.6.2 透過「理論模型」表示通量 46 2.6.3 透過垂直裝置測定RM 49 2.6.4 利用RM去建立串聯裝置(Tandem)連續分離模型 51 2.6.5 利用RM解釋乳液可能在膜上的行為 53 第三章 模型建立 56 3.1 擬似油體(Psuedo-liquid-oil,PLO) 56 3.2 串聯(tandem)乳液理論模型建立 57 3.3 串聯(tandem)乳液實驗模型建立 59 3.4 RF模型建立 60 第四章 實驗內容 61 4.1 實驗藥品 61 4.2 儀器設備與裝置 63 4.2.1 Milli-Q超純水系統 63 4.2.2 箱型高溫爐 (Muffle furnace) 64 4.2.3 滾筒電仿絲(Electrospinning) 64 4.2.4 桌上型平面震盪器 66 4.2.5 掃描式電子顯微鏡 (Scanning electron microscope) 66 4.2.6 接觸角分析儀 (Contact angle measure analyzer) 67 4.2.7 分離膜阻力(RM)、入侵壓力(WIP,OWIP)、批次分離通量測定裝置 68 4.2.8 串聯連續分離裝置 (Tandem device) 70 4.2.9 蠕動馬達 71 4.2.10 動態雷射光散射儀 (Dynamic Light Scattering, DLS) 72 4.2.11 桌上型精密濁度計 73 4.2.12 超音波震盪槽 (Ultrasonicator) 74 4.2.13 光學顯微鏡 (Optical microscope) 75 4.2.14 顯微拉曼光譜儀 (DXR) 75 4.3 實驗方法 76 4.3.1 水在油乳液製備 76 4.3.2 使用浸鍍法製備疏水/親油分離膜 76 4.3.3 使用靜電紡絲法製備疏水/親油分離膜 77 4.3.4 親水/水下疏油膜製備 78 4.3.5 接觸角量測 78 4.3.6 入侵壓力量測( Water intrusion pressure,WIP; Oil wetted water intrusion pressure,OWWIP; Oil intrusion pressure,OIP) 79 4.3.7 分離膜阻力(RM)測定 79 4.3.8 批次分離流程 80 4.3.9 測量連續分離側邊疏水/親油膜之油通量及親水/疏油膜之水通量 80 4.4實驗架構 81 第五章 結果與討論 82 5.1 乳液的特性 82 5.1.1 乳液穩定性 83 5.1.2 乳液的粒徑分布 85 5.1.3 乳液的DLS結果 87 5.1.4 乳液製程上的特性 88 5.2 疏水/親油膜特性 90 5.2.1 SEM表面分析及與水的接觸角 90 5.2.2 測量膜阻力RM 92 5.2.3 疏水/親油膜對水入侵壓力(WIP)和油潤濕後對水入侵壓力(OWWIP) 95 5.2.4 利用疏水/親油膜批次分離W/O乳液結果 95 5.2.5 疏水/親油分離膜再使用性 102 5.2.6 選擇疏水/親油分離膜 105 5.3 親水/水下疏油膜特性 106 5.3.1 SEM表面分析及水下與油(甲苯)的接觸角 106 5.3.2 測量膜阻力RM及水下對油入侵壓力UWOIP 109 5.3.3 利用親水/水下疏油膜批次分離W/O乳液結果以及在使用性結果與討論 112 5.3.5 親水/水下疏油分離膜選擇 123 5.4 連續分離W/O乳液結果及建立模型 125 5.4.1 連續分離W/O乳液 126 5.4.2 連續分離乳液擬似流體(PLO)模型建立即得到RF 137 5.4.3 連續分離W/O乳液油通量模型建立 144 5.4.4 連續分離W/O乳液水通量討論 146 5.5 運用模型處理超過穩態之情形 150 第六章 結論與建議 152 6.1 結論 152 6.2建議 157 第七章 參考文獻 158 第八章 附錄 165

    [1] M. R. Riazi, “Oil Spill Occurrence, Simulation, and Behavior,” CRC Press, pp. 290, 2021.
    [2] D. J. McClements, “Critical review of techniques and methodologies for characterization of emulsion stability,” Critical Reviews in Food Science and Nutrition, vol. 47, no. 7, pp. 611-49, 2007.
    [3] A. Taha, E. Ahmed, A. Ismaiel, M. Ashokkumar, X. Xu, S. Pan, and H. Hu, “Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions,” Trends in Food Science & Technology, vol. 105, pp. 363-377, 2020.
    [4] S. Friberg, Larsson, K., & Sjoblom, J., “Food emulsions (4th ed.),” Marcel Dekker Incorporation, pp. 665, 2003.
    [5] Y. Tian, J. Zhou, C. He, L. He, X. Li, and H. Sui, “The formation, stabilization and separation of oil–water emulsions: A Review,” Processes, vol. 10, no. 4, 2022.
    [6] 秦国鲲, “Analysis on factors influencing crude oil demulsification effectiveness by ultrasonic wave,” 油气地质与采收率(英文版), vol. 12, no. 4, 2005.
    [7] 吴应湘, and许晶禹, “油水分离技术-力学进展” vol. 45, no. 1, pp. 180-216, 2015.
    [8] N. Zhang, X. Yang, Y. Wang, Y. Qi, Y. Zhang, J. Luo, P. Cui, and W. Jiang, “A review on oil/water emulsion separation membrane material,” Journal of Environmental Chemical Engineering, vol. 10, no. 2, 2022.
    [9] W. Tan, X. G. Yang, and X. F. Tan, “Study on demulsification of crude oil emulsions by microwave chemical method,” Separation Science and Technology, vol. 42, no. 6, pp. 1367-1377, 2007.
    [10] D. Meikrantz, C. Schardin, L. Macaluso, A. Federici, and H. W. Sams, "High volume centrifugal oil-water separation." vol. 1, pp. 21-25.
    [11] T. Detloff, and D. Lerche, “Centrifugal separation in tube and disc geometries: experiments and theoretical models,” Acta Mechanica, vol. 201, no. 1-4, pp. 83-94, 2008.
    [12] M. Chiesa, S. Ingebrigtsen, J. A. Melheim, P. V. Hemmingsen, E. B. Hansen, and Ø. Hestad, “Investigation of the role of viscosity on electrocoalescence of water droplets in oil,” Separation and Purification Technology, vol. 50, no. 2, pp. 267-277, 2006.
    [13] D.-Q. Cao, E. Iritani, and N. Katagiri, “Solid–liquid separation properties in centrifugal sedimentation of bidisperse colloidal suspension,” Journal of Chemical Engineering of Japan, vol. 48, no. 7, pp. 556-563, 2015.
    [14] M. Balsamo, A. Erto, and A. Lancia, “Chemical demulsification of model water-in-oil emulsions with low water content by means of ionic liquids,” Brazilian Journal of Chemical Engineering, vol. 34, no. 1, pp. 273-282, 2017.
    [15] M. Zhai, M. Wu, C. Wang, and X. Li, “A novel silica-supported polyether polysiloxane quaternary ammonium demulsifier for highly efficient fine-sized oil droplet removal of oil-in-water emulsions,” RSC Advances, vol. 10, no. 32, pp. 18918-18926, 2020.
    [16] E. Yonguep, K. F. Kapiamba, K. J. Kabamba, and M. Chowdhury, “Formation, stabilization and chemical demulsification of crude oil-in-water emulsions: A review,” Petroleum Research, vol. 7, no. 4, pp. 459-472, 2022.
    [17] R. R. Lessard, and G. DeMarco, “The significance of oil spill dispersants,” Spill Science & Technology Bulletin, vol. 6, no. 1, pp. 59-68, 2000.
    [18] S. Kumar, A. Pandey, M. Trifkovic, and S. L. Bryant, “A facile and economical configuration for continuous generation and separation of oil in water emulsions,” Separation and Purification Technology, vol. 256, 2021.
    [19] V. Broje, and A. A. Keller, “Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface,” Environmental Science & Technology, vol. 40, no. 24, pp. 7914-7918, 2006.
    [20] A. A. H. Abdel-Naby, A.H. , “Oily wastewater separator enhancement using hybrid system drum skimmer integrated with air injection & surface air stream,” International Journal of Mechanical and Production Engineering (IJMPE), vol. 6, no. 5, pp. 6, 2018.
    [21] R. Boopathy, S. Shields, and S. Nunna, “Biodegradation of crude oil from the BP oil spill in the marsh sediments of southeast Louisiana, USA,” Applied Biochemistry and Biotechnology, vol. 167, no. 6, pp. 1560-8, 2012.
    [22] E. Z. Ron, and E. Rosenberg, “Enhanced bioremediation of oil spills in the sea,” Current Opinion Biotechnology, vol. 27, pp. 191-4, 2014.
    [23] G. Kwon, E. Post, and A. Tuteja, “Membranes with selective wettability for the separation of oil-water mixtures,” Materials Rsearch Society Communications, vol. 5, no. 3, pp. 475-494, 2015.
    [24] R. K. Gupta, G. J. Dunderdale, M. W. England, and A. Hozumi, “Oil/water separation techniques: a review of recent progresses and future directions,” Journal of Materials Chemistry A, vol. 5, no. 31, pp. 16025-16058, 2017.
    [25] S. Li, J. Huang, Z. Chen, G. Chen, and Y. Lai, “A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications,” Journal of Materials Chemistry A, vol. 5, no. 1, pp. 31-55, 2017.
    [26] Y. Deng, C. Peng, M. Dai, D. Lin, I. Ali, S. S. Alhewairini, X. Zheng, G. Chen, J. Li, and I. Naz, “Recent development of super-wettable materials and their applications in oil-water separation,” Journal of Cleaner Production, vol. 266, pp. 1-26, 2020.
    [27] K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,” Soft Materials, vol. 5, no. 7, 2009.
    [28] W. Barthlott, and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Plant Biology, vol. 202, no. 1, pp. 1-8, 1997.
    [29] A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, and R. E. Cohen, “Designing superoleophobic surfaces,” Science, vol. 318, no. 5856, pp. 1618-22, 2007.
    [30] J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 206, no. 1, pp. 41-46, 2002.
    [31] E. W. Washburn, “The dynamics of capillary flow,” Physical Review, vol. 17, no. 3, pp. 273-283, 1921.
    [32] J. Song, S. Huang, Y. Lu, X. Bu, J. E. Mates, A. Ghosh, R. Ganguly, C. J. Carmalt, I. P. Parkin, W. Xu, and C. M. Megaridis, “Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh,” ACS Applied Materials & Interfaces, vol. 6, no. 22, pp. 19858-65, Nov 26, 2014.
    [33] S. Oh, S. Ki, S. Ryu, M. C. Shin, J. Lee, C. Lee, and Y. Nam, “Performance analysis of gravity-driven oil-water separation using membranes with special wettability,” Langmuir, vol. 35, no. 24, pp. 7769-7782, 2019.
    [34] C. Chen, D. Weng, A. Mahmood, S. Chen, and J. Wang, “Separation mechanism and construction of surfaces with special wettability for oil/water separation,” ACS Applied Materials & Interfaces, vol. 11, no. 11, pp. 11006-11027, 2019.
    [35] W. Zhang, N. Liu, Q. Zhang, R. Qu, Y. Liu, X. Li, Y. Wei, L. Feng, and L. Jiang, “Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability,” Angewandte Chemie International Edition, vol. 57, no. 20, pp. 5740-5745, 2018.
    [36] Z. Xu, Y. Zhao, H. Wang, H. Zhou, C. Qin, X. Wang, and T. Lin, “Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separation,” ACS Applied Materials & Interfaces, vol. 8, no. 8, pp. 5661-7, 2016.
    [37] Y. Fu, B. Jin, Q. Zhang, X. Zhan, and F. Chen, “pH-Induced switchable superwettability of efficient antibacterial fabrics for durable selective oil/water separation,” ACS Applied Materials & Interfaces, vol. 9, no. 35, pp. 30161-30170, 2017.
    [38] C.-T. Liu, and Y.-L. Liu, “pH-Induced switches of the oil- and water-selectivity of crosslinked polymeric membranes for gravity-driven oil–water separation,” Journal of Materials Chemistry A, vol. 4, no. 35, pp. 13543-13548, 2016.
    [39] X. Yue, Z. Li, T. Zhang, D. Yang, and F. Qiu, “Design and fabrication of superwetting fiber-based membranes for oil/water separation applications,” Chemical Engineering Journal, vol. 364, pp. 292-309, 2019.
    [40] S. Xiong, L. Kong, J. Huang, X. Chen, and Y. Wang, “Atomic-layer-deposition-enabled nonwoven membranes with hierarchical ZnO nanostructures for switchable water/oil separations,” Journal of Membrane Science, vol. 493, pp. 478-485, 2015.
    [41] B. Wang, W. Liang, Z. Guo, and W. Liu, “Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature,” Chemical Society Reviews, vol. 44, no. 1, pp. 336-61, 2015.
    [42] Y. Pan, L. Liu, Z. Zhang, S. Huang, Z. Hao, and X. Zhao, “Surfaces with controllable super-wettability and applications for smart oil-water separation,” Chemical Engineering Journal, vol. 378, 2019.
    [43] I. E. Palamà, S. D'Amone, V. Arcadio, D. Caschera, R. G. Toro, G. Gigli, and B. Cortese, “Underwater wenzel and cassie oleophobic behaviour,” Journal of Materials Chemistry A, vol. 3, no. 7, pp. 3854-3861, 2015.
    [44] L. Li, Z. Xu, W. Sun, J. Chen, C. Dai, B. Yan, and H. Zeng, “Bio-inspired membrane with adaptable wettability for smart oil/water separation,” Journal of Membrane Science, vol. 598, 2020.
    [45] F. Yu, S. Chen, Y. Chen, H. Li, L. Yang, Y. Chen, and Y. Yin, “Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel,” Journal of Molecular Structure, vol. 982, no. 1-3, pp. 152-161, 2010.
    [46] Z. Yan, Y. Zhang, H. Yang, G. Fan, A. Ding, H. Liang, G. Li, N. Ren, and B. Van der Bruggen, “Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: A review,” Chemical Engineering Research and Design, vol. 157, pp. 195-214, 2020.
    [47] A. K. Wardani, D. Ariono, Subagjo, and I. G. Wenten, “Hydrophilic modification of polypropylene ultrafiltration membrane by air-assisted polydopamine coating,” Polymers for Advanced Technologies, vol. 30, no. 4, pp. 1148-1155, 2019.
    [48] C. F. Wang, S. Y. Yang, and S. W. Kuo, “Eco-Friendly Superwetting material for highly effective separations of oil/water mixtures and oil-in-water emulsions,” Scientific Reports, vol. 7, pp. 43053, 2017.
    [49] N. Liu, M. Zhang, W. Zhang, Y. Cao, Y. Chen, X. Lin, L. Xu, C. Li, L. Feng, and Y. Wei, “Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation,” Journal of Materials Chemistry A, vol. 3, no. 40, pp. 20113-20117, 2015.
    [50] L. Liu, B. Shao, and F. Yang, “Polydopamine coating – Surface modification of polyester filter and fouling reduction,” Separation and Purification Technology, vol. 118, pp. 226-233, 2013.
    [51] N. Abounahia, H. Qiblawey, and S. J. Zaidi, “Progress for co-incorporation of polydopamine and nanoparticles for improving membranes performance,” Membranes (Basel), vol. 12, no. 7, 2022.
    [52] Z. Liu, W. Wu, Y. Liu, C. Qin, M. Meng, Y. Jiang, J. Qiu, and J. Peng, “A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation,” Separation and Purification Technology, vol. 199, pp. 37-46, 2018.
    [53] A. K. Wardani, D. Ariono, S. Subagjo, and I. G. Wenten, “Fouling tendency of PDA/PVP surface modified PP membrane,” Surfaces and Interfaces, vol. 19, 2020.
    [54] 謝承鎰, “疏水/親油紡織品分離膜的油-水乳液分離機制之探討,” 成功大學化學工程學系學位論文, 2020.
    [55] J. Wu, Y. Ding, J. Wang, T. Li, H. Lin, J. Wang, and F. Liu, “Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions,” Journal of Materials Chemistry A, vol. 6, no. 16, pp. 7014-7020, 2018.
    [56] X. Yan, X. Xiao, C. Au, S. Mathur, L. Huang, Y. Wang, Z. Zhang, Z. Zhu, M. J. Kipper, J. Tang, and J. Chen, “Electrospinning nanofibers and nanomembranes for oil/water separation,” Journal of Materials Chemistry A, vol. 9, no. 38, pp. 21659-21684, 2021.
    [57] D. Mailley, A. Hébraud, and G. Schlatter, “A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications,” Macromolecular Materials and Engineering, vol. 306, no. 7, 2021.
    [58] A. K. Kota, G. Kwon, W. Choi, J. M. Mabry, and A. Tuteja, “Hygro-responsive membranes for effective oil-water separation,” Nature Communications, vol. 3, pp. 1025, 2012.
    [59] Y.-Q. Hu, H.-N. Li, and Z.-K. Xu, “Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions,” Journal of Membrane Science, vol. 648, 2022.
    [60] Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, and L. Jiang, “Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films,” Advanced Materials, vol. 25, no. 17, pp. 2422-7, 2013.
    [61] X. Peng, J. Jin, Y. Nakamura, T. Ohno, and I. Ichinose, “Ultrafast permeation of water through protein-based membranes,” Nature Nanotechnology, vol. 4, no. 6, pp. 353-7, 2009.
    [62] R. W. Baker, “Membrane technology and applications (2nd ed.),” 2004.
    [63] S.-Y. Luo, L.-W. Huang, C.-Y. Hsieh, and Y.-M. Yang, “Performance characterization of hydrophobic/oleophilic fabric membranes for stratified oil-water separation,” Applied Physics A, vol. 128, no. 1, 2021.
    [64] 黃律瑋, “具特殊濕潤性紡織品分離膜在分層油-水混合物連續分離的應用,” 成功大學化學工程學系學位論文, 2022.
    [65] A. Rushton, “Mathematical models and design methods in solid-liquid separation,” 1985.
    [66] M. M. Dal-Cin, F. McLellan, C. N. Striez, C. M. Tam, T. A. Tweddle, and A. Kumar, “Membrane performance with a pulp mill effluent: Relative contributions of fouling mechanisms,” Journal of Membrane Science, vol. 120, no. 2, pp. 273-285, 1996.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE