簡易檢索 / 詳目顯示

研究生: 楊義豐
Yang, Jackey
論文名稱: Ca(Mg1/3Nb2/3)O3-CaZrO3 系統之結構與微波介電性質
Crystal Structure and Microwave Dielectric Property Relations in Ca(Mg1/3Nb2/3)O3-CaZrO3 System
指導教授: 黃啟原
Huang, Chi-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 65
中文關鍵詞: 1:1有序結構複合鈣鈦礦結構微波介電材料1:2有序結構
外文關鍵詞: 1:1 ordering, complex perovskites, microwave dielectric materials, 1:2 ordering
相關次數: 點閱:1464下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用X-光繞射分析研究 (1 - x)Ca(Mg1/3Nb2/3)O3-(x)CaZrO3 (CMN-CZ) (x = 0 ~ 0.50) 固溶體系統的結構並量測其燒結體之微波介電性質,進而探討本系統在 1500℃/8 h 之成分、結構與微波介電性質的關係。隨著 x 的增加,本系統之晶體結構中 B-site 之陽離子的排列從 1:2 有序 (x = 0) 轉變成 1:1 有序 (x = 0.10) 與 disordered (x = 0.50)。此有序結構相轉換與各陽離子之氧八面體之比率的變化有關。1:2 有序程度主導 x = 0 ~ 0.10 之 Qxf 值隨著 x 的增加而降低的趨勢。扭曲的 [NbO6] 八面體之比率主導本系統之相對介電係數隨著 x 的增加而昇高以及 x = 0.10 ~ 0.50之共振頻率溫度係數隨著 x 的增加而往正的方向變動的趨勢。

    The structures of compositions in the (1 - x)Ca(Mg1/3Nb2/3)O3-(x)CaZrO3 (CMN-CZ) (x = 0 ~ 0.50) solid solution system have been examined using X-ray diffractometry, and their microwave dielectric properties have been characterized in the microwave range. The composition-structure-property relationships of this system sintered with 1500℃/8 h were reported. As x was increased, the transition of B-site cation ordered perovskites from 1:2 (x = 0) to 1:1 (x = 0.1) and disordered (x = 0.5) types was observed and related to the variation in the proportion of cation-oxygen octahedra. A decrease in Qf value (x = 0 ~ 0.10) with increasing x was dominated by a decrease in the degree of 1:2 order. A increase in relative dielectric constant (x = 0 ~ 0.50) and the positively change of temperature coefficient of resonance frequency (x = 0.10 ~ 0.50) with increasing x were dominated by a decrease in the proportion of [NbO6] octahedra.

    中文摘要…………………………………………………………………………………Ⅰ Abstract…………………………………………………………………………………Ⅱ 致謝………………………………………………………………………………………Ⅲ 目錄………………………………………………………………………………………IV 表目錄……………………………………………………………………………………VI 圖目錄……………………………………………………………………………………VII 第一章 緒論………………………………………………………………………………1 1-1 前言………………………………………………………………………………1 1-2 研究方向及目的…………………………………………………………………1 第二章 前人研究及理論基礎……………………………………………………………2 2-1 鈣鈦礦結構 (perovskite) (ABX3)……………………………………………2 2-1-1 容忍因子…………………………………………………………………2 2-1-2 1:2有序複合鈣鈦礦結構 (A(B’1/3B”2/3)O3………………………6 2-1-3 複合鈣鈦礦結構之有序相轉變…………………………………………6 2-2 置換原理…………………………………………………………………………12 2-3 氧八面體的傾斜及扭曲…………………………………………………………12 2-3-1 鈣鈦礦結構中氧八面體的傾斜………………………………………13 2-3-2 鈣鈦礦結構中氧八面體的扭曲………………………………………13 2-4 微波介電性質……………………………………………………………………18 2-4-1 相對介電常數……………………………………………………………18 2-4-2 共振頻率溫度係數………………………………………………………19 2-4-3 介電常數溫度係數………………………………………………………22 2-4-4 品質因數…………………………………………………………………23 第三章 實驗方法及步驟…………………………………………………………………24 3-1 起始原料…………………………………………………………………………24 3-2 粉末之製備與燒結………………………………………………………………24 3-2-1 粉末之製備………………………………………………………………24 3-2-2 粉末之熱重/熱差分析…………………………………………………25 3-2-3 燒結體製備………………………………………………………………25 3-3 材料特性分析……………………………………………………………………25 3-3-1 相鑑定與晶格常數計算…………………………………………………25 3-3-2 燒結體密度量測…………………………………………………………31 3-3-3 顯微結構觀察……………………………………………………………32 3-4 材料性質量測……………………………………………………………………32 3-4-1 燒結體電性質量測之樣品準備…………………………………………32 3-4-2 微波介電性質量測………………………………………………………32 第四章 結果與討論………………………………………………………………………36 4-1 粉末之合成………………………………………………………………………36 4-2 有序結構相轉換與晶格常數……………………………………………………36 4-3 粉末之燒結與顯微結構觀察……………………………………………………38 4-4 微波介電性質……………………………………………………………………39 4-4-1 品質因數…………………………………………………………………39 4-4-2 相對介電常數……………………………………………………………40 4-4-3 共振頻率溫度係數………………………………………………………40 第五章 結論………………………………………………………………………………63 參考文獻…………………………………………………………………………………64

    1. M. A. Akbas and P. K. Davies, “Ordering-Induced Microstructures and Microwave Dielectric Properties of the Ba(Mg1/3Nb2/3)O3–BaZrO3 System,” J. Am. Ceram. Soc., 81 [3], 670–676, 1998.
    2. H. Kagata and J. Kato, “Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies,” Jpn. J. Appl. Phys., 33, 5463–5465, 1994.
    3. C. S. Park, J. H. Paik, and S. Nahm, “Crystal Structure of A2+(Mg1/3Nb2/3)O3 (A2+ = Sr2+ and Ca2+) Ceramics,” J. Mater. Sci. Lett., 18, 691–694, 1999.
    4. H. J. Lee, H. M. Park, Y. K. Cho, and Y. W. Song, “Microstructure Characterizations in Calcium Magnesium Niobate,” J. Am. Ceram. Soc., 84 [7], 1632–1636, 2001.
    5. A. S. Bhalla, Ruyan Guo, and Rustum Roy, “The Perovskite Structure – a Review of its Role in Ceramic Science and Technology,” Mat. Res. Innovat., 4, 3–26, 2000.
    6. F. S. Galasso, Perovskite and High Tc Superconductors, Gordon and Breach, New York, 1990.
    7. L. Chai and P. K. Davies, “Formation and Structural Characterization of 1:1 Ordered Perovskites in the Ba(Zn1/3Ta2/3)O3–BaZrO3 System,” J. Am. Ceram. Soc., 80 [12], 3193–3198, 1997.
    8. X. M. Chen, D. Liu, R. Z. Hou, X. Hu, and X. Q. Liu, “Microstructures and Microwave Dielectric Characteristics of Ca(Zn1/3Nb2/3)O3 Complex Perovskite Ceramics,” J. Am. Ceram. Soc., 87 [12], 2208–2212, 2004.
    9. V. Tinga, Y. Liua, L. Noren, R.L. Withers, D.J. Goossens, M. James, and C. Ferraris, “A Structure, Conductivity and Dielectric Properties Investigation of A3CoNb2O9 (A=Ca2+, Sr2+, Ba2+) Triple Perovskites,” J. Solid State Chem., 177, 4428–4442, 2004.
    10. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed., John Wiley and Sons, New York, 1976.
    11. C. G. Bergeron and S. H. Risbud, Introduction to phase equilibria in ceramics, The American Ceramic Society Inc., Columbus, 1984.
    12. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr., A32, 751–767, 1976.
    13. A. M. Glazer, “The classification of tilted octahedra in perovskite,” Acta Cryst, B28, 3384–3392, 1972.
    14. A. M. Glazer, “Simple Ways of Determining Perovskite Structure,” Acta Cryst, A31, 756–762, 1975.
    15. I. M. Reaney, E. L. Colla, and N. Setter, “Dielectric and structural characteristics of Ba- and Sr-based complex perovskite as a function of tolerance factor,” Jpn. J. Appl. Phys., 33, 3984–3990, 1994.
    16. M. W. Lufaso, “Crystal Structures, Modeling, and Dielectric Property Relationships of 2:1 Ordered Ba3MM’2O9 (M = Mg, Ni, Zn; M’ = Nb, Ta) Perovskites,” Chem. Mater., 16, 2148–2156, 2004.
    17. 歐建志,(Ba(1-x)Srx)5Nb4O15 陶瓷材料的結構與微波介電性質,國立成功大學,資源工程研究所,碩士論文,2005。
    18. A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons, New York, 2003.
    19. E. L. Colla, I. M. Reaney, and N. Setter, “Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity,” J. Appl. Phys., 74[5], 3414–3425, 1994.
    20. A. J. Bosman and E. E. Havinga, “Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds,” Phys. Rev., 129[4], 1593–1600, 1963.
    21. S. Kawashima, M. Nishida, I. Ueda, and H. Ouchi, “Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequencies,” J. Am. Ceram. Soc., 66 [6], 421–423, 1983.
    22. C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. thesis, The Pennsylvania State University, U. S. A., 1990.
    23. Y. Kobayashi and M. Katoh, ‘‘Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,’’ IEEE Trans. Microwave Theory Tech., MTT-33, 586–592, 1985.
    24. B. B. W. Hakki and P. D. Coleman, ‘‘A Dielectric Method of Measuring In- Inductive Capacitance in the Millimeter Range,’’ IEEE Trans. Microwave Theory Tech., MTT-8 , 402–410, 1960.
    25. W. E. Courtney, ‘‘Analysis and Evolution of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,’’ IEEE Trans. Microwave Theory Tech., MTT-18, 476–485, 1970.
    26. C. L. Huang, R. Y. Yang and M. H. Weng, ‘‘ Dielectric Properties of CaTiO3Ca(Mg1/3Nb2/3)O3 Ceramic System at Microwave Frequency,’’ Jpn. J. Appl. Phys., 39, 6608–6611, 2000.
    27. T. Yamaguchi, Y. Komatsu, T. Otobe and Y. Murakami, ‘‘New Developed Ternary (Ca, Sr, Ba) Zirconate Ceramic System for Microwave Resonators,’’ Ferroelectrics, 27, 273–276, 1980.

    下載圖示 校內:立即公開
    校外:2006-07-31公開
    QR CODE