簡易檢索 / 詳目顯示

研究生: 蕭仕偉
Hsiao, Shih-Wei
論文名稱: 線型行波超音波馬達定子之設計與分析
Stator Design and Analysis of the Traveling Wave-type Ultrasonic Linear Motor
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 72
中文關鍵詞: 壓電超音波馬達精密定位控制奈米科技
外文關鍵詞: Ultrasonic motor, Piezoelectric, Nano-technology
相關次數: 點閱:189下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近幾年在奈米科技的推波助瀾之下,世界各國莫不全力投入這個劃時代的產業,視為國家的發展重點。而奈米科技的發展有賴於操控奈米尺度之微細加工技術,故高精密定位控制技術之重要性不言可喻。線型超音波馬達除了定位精度高外,其行程亦可隨需要而調整,可應用於精密定位平台,在需兼顧精度及工作範圍的場合,有其相當之優勢。其中,定子的振動行為是影響超音波馬達性能的重要關鍵。因此本論文針對一線型行波超音波馬達之定子,包含壓電結構與黏彈結構,利用Hamilton’s Principle 與 Assumed Mode Energy Method建立兩結構之動態模型。其中因黏彈結構需考慮剪力之影響,故將其視為一Timoshenko樑,並使用GHM方法描述黏彈結構之材料特性。由兩動態模型之邊界條件相等,可相互耦合為定子之模型。同時使用有限元素分析軟體ANSYS輔助分析適合的黏彈材料長度,並對此定子結構作初步的可行性分析。透過以上的分析,可以瞭解各設計參數對於定子行為之影響,並依此建立出適合此定子之設計分析流程,以掌握超音波馬達設計之關鍵技術。

      Due to the incitement of nano-technology, many countries have urged to develop this epochal technology, treating which as the nations’ key industry. However, the development of nano-technology highly depends on nanoscale manipulation technique and hence high precision manufacturing process becomes critical. Ultrasonic linear motors, which possess the advantages of both long stroke and high precision, are capable of satisfying the requirement of a precision stage. This thesis studies a stator of a traveling-wave type ultrasonic linear motor which consists of a piezoelectric based actuator and viscoelastic structures due to that the stator vibration is an important key to the performance of ultrasonic motors. The Hamilton’s Principle and the assumed mode energy method are adopted to obtain the dynamic equations of the actuator and viscoelastic structures. The viscoelastic structure is modeled as a Timoshenko beam, and the GHM method is employed to account for the frequency dependent damping properties. By applying the continuity conditions in the interface of the actuator and viscoelastic structures, the two sets of equations can be coupled as the stator model. ANSYS is used to analyze the suitable dimension of the viscoelastic structures and feasibility of the stator. Through the analyses, the influence of various design parameters of the stator can be understood so that the proper stator design procedure can be induced to master the key technique of ultrasonic motor design.

    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 符號表 Ⅸ 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-2.1 超音波馬達 3 1-2.2 分析理論 11 1.3 研究目的與本文架構 13 第二章 壓電結構動態模型建立 15 2-1 壓電材料 15 2-1.1 壓電效應 15 2-1.2 壓電方程式 16 2-2 動態模型建立 19 2-3 狀態空間轉換 28 第三章 黏彈結構動態模型建立 30 3-1 黏彈材料之數學模型 32 3.2 動態模型建立 33 3-3 狀態空間轉換 42 第四章 馬達定子分析 44 4-1 壓電樑結構分析 44 4-2 黏彈結構分析 47 4-3 定子之分析 53 第五章 結論與建議 63 參考文獻 65 附錄A 69

    [1] 北京青年報,世界最小超聲馬達在清華誕生,2001年12月6日。

    [2] T. Sashida and T. Kenjo, 1993, An Introduction to Ultrasonic Motors, Clarendon Press.

    [3] S. Ueha and Y. Tomikawa, 1993, Ultrasonic Motors: Theory and Applications, Clarendon Press.

    [4] K. Uchino, 1998, “Piezoelectric ultrasonic motors: Overview,” Smart Material Structure, vol. 7, pp. 273-285.

    [5] J. Wallaschek, 1995, “Piezoelectric ultrasonic motors,” Journal of Intelligent Material Systems and Structures, vol. 6, pp. 71-83.

    [6] N. W. Hagood IV and A. J. McFarland, 1995, “Modeling of a piezoelectric rotary ultrasonic motor,” IEEE Transaction on Sonics and Ultrasonics, Ferroelectrics, and Frequency control, vol. 42, pp. 210-224.

    [7] T. Senjyu, K. Uezato, and H. Miyazoto, 1995, “Adjustable speed control of ultrasonic motors by adaptive control,” IEEE Transactions on Power Electronics, vol. 10, pp. 532-538.

    [8] Y. Roh, S. Lee, and W. Han, 2001, “Design and fabrication of a new traveling wave-type ultrasonic linear motor,” Sensors and Actuators A, vol. 94, pp. 205-210.

    [9] Y. Tomikawa, T. Takano, and H. Umeda, 1992, “Thin rotary and linear ultrasonic motors using a double-mode piezoelectric vibrator of the first longitudinal and second bending modes,” Japanese Journal of Applied Physics, vol. 31, pp. 3073-3076.

    [10] J. Toyoda, and K. Murano, 1991, “A small-size linear motor,” Japanese Journal of Applied Physics, vol. 30, pp. 2274-2276.

    [11] A. Kumada, 1985, “A piezoelectric ultrasonic motor,” Japanese Journal of Applied Physics, vol. 24, pp. 739-741.

    [12] K. Nakamura, M. Kurosawa, and S. Ueha, 1991, “Characteristics of a hybrid transducer type ultrasonic motor,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 38, pp. 188-193.

    [13] P. A. Juang and H. J. Hardtke, 2001, “A new disc-type ultrasonic motor,” Sensors and Actuators A, vol. 94, pp. 102-111.

    [14] P. Hagedorn, J. Wallaschek, 1992, “Travelling wave ultrasonic motors, part I: working principle and mathematical modelling of the stator,” Journal of Sound and Vibration, vol. 155, pp. 31-46.

    [15] T. Yamabuchi and Y. Kagawa, 1989, “Numerical simulation of a piezoelectric ultrasonic motor and its characteristics,” Simulation, Vol.8-3, pp. 69.

    [16] T. Maeno, T. Tsukimoto, and A. Miyake, 1992, “Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 39, pp. 668-674.

    [17] Y. Kagawa and T. Yamabuchi, 1976, “Finite element approach for a piezoelectric circular rod,” IEEE Transaction on Sonics and Ultrasonics, vol. su-23, pp. 379-385.

    [18] Y. Kagawg and T. Yamabuchi, 1979, “Finite element simulaion of a composite piezoelectric ultrasonic transducer,” IEEE Transaction on Sonics and Ultrasonics, vol. su-26, pp. 81-88.

    [19] D. Boucher, M. Lagier, and C. Maerfeld, 1981, “Computation of the vibrational modes for piezoelectric array transducers using a mixed finite element-pertyrbation method,” IEEE Transaction on Sonics and Ultrasonics, vol. su-28, pp. 318-330.

    [20] Y. Kagawa and G. M. L. Gladwell, 1970, “Finite element analysis of flexure-type vibrators with electrotrictive transducers,” IEEE Transaction on Sonics and Ultrasonics, vol. su-17, pp. 41-49.

    [21] Y. Tomikawa, M. Yaginuma, S. Hirose and T. Takano, 1991,“An equivalent circuit expression of an ultrasonic motor and measurement of its element-In the case of L1-B8 multimode rectangular thin-form motor,” Japanese Journal of Applied Physics, vol. 30, pp. 2398-2401.

    [22] M. Aoyagr and Y. Tomikawa, 1995, “Simplified equivalent circuit of ultrasonic motor and its application to estimation of motor characteristics,” Japanese Journal of Applied Physics, vol. 34, pp. 2752-2755.

    [23] 蔡明祺,蕭仕偉,謝旻甫,2003,“顛覆傳統的無聲馬達--超音波馬達,” 科學發展月刊,第367期,pp. 42-47。

    [24] 張福學,王麗坤,2002,現代壓電學(上)(中)(下),科學出版社。

    [25] 吳朗,1994,電子陶瓷—壓電,全欣科技圖書。

    [26] Leonard Meirovitch, 1967, Analytical Methods in Vibrations, Macmillan.

    [27] William B. Bickford, 1993, Mechanics of Solids – Concepts and Applications, IRWIN.

    [28] 周光泉,劉孝敏,1996,黏彈性理論,中國科學技術大學出版社。

    [29] A. D. Nashif, D. I.G. Jones, and J. P. Henderson, 1985, Vibration Damping, Wiley.

    [30] R. M. Christensen, 1982, Theory of Viscoelasticity: An Introduction, 2nd Ed., Academic Press, Inc.

    [31] D. J. McTavish, and P. C. Hughes, 1993, “Modeling of linear viscoelastic space structures,” ASME Journal of Vibration and Acoustics, vol. 115, pp. 103-110.

    [32] M. S. Tsai, and K. W. Hwang, 2002, “ Robust control of enhanced active constrained layer treatment with passive shunt circuit”, Journal of the Chinese Society of Mechanical Engineers, vol. 23, pp. 427-440.

    [33] S. S. Rao, 1985, Mechanical Vibrations, Addison-Wesley.

    下載圖示 校內:2005-07-30公開
    校外:2007-07-30公開
    QR CODE