| 研究生: |
李忠圜 Li, Chung-Yuan |
|---|---|
| 論文名稱: |
多重反應監測(MRM)結合抗體金奈米探針技術應用於標的蛋白質體學之研究 Development of Multiple Reaction Monitoring (MRM) Coupled with Gold Nanoparticle-based Antibody Probes for Targeted Proteomics |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 免疫沉澱 、金奈米粒子 、多重反應監測 |
| 外文關鍵詞: | Immunoprecipitation, Gold nanoparticles, Multiple Reaction Monitoring |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質譜儀的多重反應監測(Multiple Reaction Monitoring, MRM)/選擇反應監測(Selected Reaction Monitoring, SRM)模式對小分子的定量是非常靈敏的,而目前可將此法應用在已證實可能為生物標記但無適合的抗體能使用之蛋白質和胜肽,並進一步對目標蛋白質進行相對或絕對定量,另外此分析平台也可用來偵測無法藉由質譜儀的survey scan來進行資料庫比對的微量蛋白質,故在本研究中,發展出以金奈米粒子為主的親和性純化方法,來純化雌激素受體α (Estrogen Receptor, ERα)和先前證實在轉錄調節上為ERα之共調節因子的c-Myc蛋白質,並結合質譜儀的MRM/SRM掃描模式進行偵測。設定上選擇一對代表目標蛋白質的胜肽序列和此胜肽片段所斷裂的碎片離子,稱為MRM/SRM transitions,其選擇方式是從質譜數據經由資料庫比對所得到的序列中謹慎挑選,此方法可藉由質譜儀的MRM/SRM偵測優點,將我們所選擇的MRM/SRM transitions的訊號提升3至4個數量級,最後再將選擇的胜肽序列,即母離子(Precursor ion),利用碰撞誘導解離(Collision Induced dissociation, CID)去做targeted MS2進一步確認胜肽結構,其實驗結果為10公分的培養皿中,若長滿MCF-7乳癌細胞,大約可以定量到1.6 pmole的ERα,而在免疫沉澱樣品中也有定到c-Myc,為了進一步確認此結果,故將c-Myc所選擇的片段去做targeted MS2,以證實胜肽結構為c-Myc片段的訊號,此實驗方法可以去對MCF-7乳癌細胞中的ERα進行定量,且能偵測一起免疫共沉澱(Co-immunoprecipitation, Co-IP)下來的c-Myc進行定性,未來可再進一步針對兩蛋白質的交互作用進行探討。
Mass spectrometry-based analytical platform called multiple reaction monitoring (MRM) or selected reaction monitoring (SRM) is a very sensitive technique for the quantification of small molecules and have recently been developed for targeted proteins and peptides, which makes it possible to verify biomarker candidate proteins even if suitable antibodies are not available. This method can be used for relative or absolute quantification of candidate protein biomarkers. This method can also be used to characterize low abundant proteins, which cannot be detected by the survey scan. In this study, a reliable SRM/MRM method for target proteins coupled with a gold nanoparticle based affinity purification (AP) methods were developed to characterize two nuclear proteins estrogen receptor α (ER-α) and c-Myc protein which was previously identified to be a co-regulator of ER-α in transcriptional regulation. For the development of MRM/SRM method, suitable sets of precursor and fragment ion masses for a given peptide, called MRM/SRM transitions, were carefully chosen to constitute definitive mass spectrometry assays that identify peptides and the corresponding proteins. The detection sensitivity of the selected ions is greatly enhanced up to 3-4 orders of magnitude by MRM/SRM method. Once a precursor is identified, the peptide structure was further characterized by targeted fragmentations through collision-induced dissociation (CID). We determined the absolute amount of ERα from a 10-cm dish of MCF-7 cells was around 1.6 pmole and the c-Myc protein was qualified and targeted by MS2 for reconfirmation. By applying this method, ER-α and c-Myc were able to be identified from MCF-7 cells and from the co- immunoprecipitation (Co-IP) which allows their interactions to be characterized.
1.Fangyi G.; Neil E. C.; Catherine S.; Renee T. F.; Xia X.; Susan E. H.; A. Heather E.; Regina G. Z., Urinary Concentrations of Estrogens and Estrogen Metabolites and Smoking in Caucasian Women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2013, 22, 58-68.
2.Ruggiero, R. J.; Likis, F. E., Estrogen: physiology, pharmacology, and formulations for replacement therapy. J Midwifery Women’s Health 2002, 47 (3), 130-138.
3.Carolyn M. K., Estrogen receptor interaction with co-activators and co-repressors. Steroids 2000, 65, 227–251.
4.Delaunay, F.; Petersson, K.; Tujague, M.; Gustafsson, J. A., Functional differences between the amino-terminal domains of estrogen receptors alpha and beta. Molecular Pharmacology 2000, 58 (3), 584-590.
5.Ruff, M.; Gangloff, M.; Wurtz, J. M.; Moras, D., Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptor. Breast Cancer Res 2000, 2 (5), 353-359.
6.Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S., The protein kinase complement of the human genome. Science 2002, 298 (5600).
7.Liebler, D. C., Introduction to Proteomics: Tools for the New Biology. 2001.
8.Yates, J. R.; Ruse, C. I.; Nakorchevsky, A., Proteomics by Mass Spectrometry: Approaches, Advances, and Applications. Annu Rev Biomed Eng 2009, 11, 49-79.
9.Wolters, D. A.; Washburn, M. P.; Yares, J. R., An automated multidimensional protein identification technology for shotgun proteomics. Analytical Chemistry 2001, 73 (23), 5683-5690.
10.Henzel, W. J.; Billeci, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of the National Academy of Sciences of the United States of America 1993, 90 (11), 5011-5015.
11.Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M.; Fenn, J. B., Electrospray interface for liquid chromatographs and mass spectrometers. Analytical Chemistry 1985, 57 (3), 675-679.
12.Berkenkamp, S.; Kirpekar, F.; Hillenkamp, F., Infrared MALDI mass spectrometry of large nucleic acids. Science 1998, 281 (5374), 260-262.
13.Wilm, M.; Mann, M., Analytical properties of the nanoelectrospray ion source. Analytical Chemistry 1996, 68 (1), 1-8.
14.de la Mora, J. F.; Van Berkel, G. J.; Enke, C. G.; Cole, R. B.; Martinez-Sanchez, M.; Fenn, J. B., Electrochemical processes in electrospray ionization mass spectrometry-Discussion. Journal of Mass Spectrometry 2000, 35 (8), 939-952.
15.Hu, Q.; Noll, R. J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R., The Orbitrap: a new mass spectrometer. J Mass Spectrom 2005, 40 (4), 430-443.
16.Olsen, J. V.; Schwartz, J. C.; Griep-Raming, J.; Nielsen, M. L.; Damoc, E.; Denisov, E.; Lange, O.; Remes, P., Taylor, D.; Splendore, M.; Wouters, E. R.; Senko, M.; Makarov, A.; Mann, M.; Horning, S., A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Molecular & Cellular Proteomics 2009, 8 (12), 2759-2769.
17.Jae C. S.; Michael W. S., A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J Am Soc Mass Spectrom 2002, 13, 659-669.
18.陳玉如, 特定標的之新藥開發:質譜技術與蛋白質體學(Mass Spectrometry and Proteomics). 教育部顧問室「生物技術科技人才培育先導型計畫」醫藥基因生物技術教學資源中心 2005, 第一版 (第三章), 21-40.
19.Ambrosino, C.; Tarallo, R.; Bamundo, A.; Cuomo, D.; Franci, G,; Nassa, G.; Paris, O.; Ravo, M.; Giovane, A.; Zambrano, N.; Lepikhova, T.; Janne, O. A.; Baumann, M.; Nyman, T. A.; Cicatiello, L.; Weisz, A., Identification of a Hormone-regulated Dynamic Nuclear Actin Network Associated with Estrogen Receptor alpha in Human Breast Cancer Cell Nuclei. Molecular & Cellular Proteomics 2010, 9 (6), 1352-1367.
20.Mann, M.; Jensen, O. N., Proteomic analysis of post-translational modifications. Nature Biotechnology 2003, 21 (3), 255-261.
21.Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C., Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc Natl Acad Sci U S A 2003, 100 (2), 443-448.
22.Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B., Protein labeling by iTRAQ:A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7 (3), 340-350.
23.Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H., Stable-isotope dimethyl labeling for quantitative proteomics. Analytical Chemistry 2003, 75 (24), 6843-6852.
24.Gingras, A. C.; Aebersold, R.; Raught, B., Advances in protein complex analysis using mass spectrometry. The Journal of Physiology 2005, 563 (Pt 1), 11-21.
25.Picotti, P.; Aebersold, R., Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nature methods 2012, 9 (6), 555-66.
26.Kuzyk, M. A.; Smith, D.; Yang, J.; Cross, T. J.; Jackson, A. M.; Hardie, D. B.; Anderson, N. L.; Borchers, C. H., Multiple Reaction Monitoring-based, Multiplexed, Absolute Quantitation of 45 Proteins in Human Plasma. Molecular & Cellular Proteomics 2009, 8, 1860-1877.
27.Calakos, N.; Bennett, M. K.; Peterson, K. E.; Scheller, R. H., Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 1994, 263 (5150), 1146-1149.
28.Formosa, T.; Barry, J.; Alberts, B. M.; Greenblatt, J., Using protein affinity chromatography to probe structure of protein machines. Methods in Enzymology 1991, 208, 24-45.
29.Miller, K. G.; Field, C. M.; Alberts, B. M.; Kellogg, D. R., Douglas R. Kellogg, Use of actin filament and microtubule affinity chromatography to identify proteins that bind to the cytoskeleton. Methods in Enzymology 1991, 196, 303-319.
30.Moresco, J. J.; Carvalho, P. C.; Yates, J. R., Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. Journal of Proteomics 2010, 73 (11), 2198-2204.
31.Anderson, N. G., Co-immunoprecipitation: Identification of interacting proteins. Methods Mol Biol 1998, 88 (35-45).
32.Schiettecatte, J.; Opdenbosch, A. V.; Anckaert, E.; Schepper, J. D.; Poppe, K.; Velkeniers, B.; Smitz, J., Immunoprecipitation for rapid detection of macroprolactin in the form of prolactin-immunoglobulin complexes. Clinical Chemistry 2005, 51 (9), 1746-1748.
33.Rimler, R. B., Replacement of sodium chloride with dextran or polyethylene glycol for immunoprecipitation of lipopolysaccharide with antibodies in chicken or turkey sera. Veterinary Immunology and Immunopathology 1983, 4 (4), 417-424.
34.丁志明, 方冠榮, 吳季珍, 周維揚, 胡裕民, 翁鴻山, 陳東煌, 傅昭銘, 馮榮豐, 黃榮俊, 黃耀輝, 張鼎張, 劉全璞, 蔡振章, 蕭璦莉, 謝達斌, 奈米科技-基礎應用與實作. 高立圖書有限公司 2005.
35.Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W., Building plasmonic nanostructures with DNA. Nat Nanotechnol 2011, 6 (5), 268-276.
36.Aubin-Tam, M. E.; Hamad-Schifferli, K., Structure and function of nanoparticle-protein conjugates. Biomed Mater 2008, 3 (3).
37.Chen, C. H.; Hong, J. X.; Wu, C. S.; Chen, S. H., Gold Nanoparticle-Based Immuno Dual Probes for Targeting Proteomics. J. Proteome 2012, 11 (7), 3921-3928.
38.洪靖翔, 抗體金奈米探針應用於免疫沉澱. 國立成功大學化學研究所碩士論文 2011.
39.Cheng, P. C.; Chang, H. K.; Chen, S. H., Quantitative Nanoproteomics for Protein Complexes (QNanoPX) Related to Estrogen Transcriptional Action. Molecular & Cellular Proteomics 2010, 9, 209-224.
40.Han, B.; Higgs, R. E., Proteomics: from hypothesis to quantitative assay on a single platform. Guidelines for developing MRM assays using ion trap mass spectrometers. Briefings in Functional Genomics 2008, 7 (5), 340-354.
校內:2023-07-01公開