研究生: |
鄭思蘋 Cheng, Szu-Ping |
---|---|
論文名稱: |
以Cu2O/TiO2光電催化還原CO2生成低碳燃料 Photoelectrocatalytic reduction of CO2 to Low-carbon Fuels by Cu2O/TiO2 |
指導教授: |
王鴻博
Wang, Hong-Paul |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 光催化 、光電催化 、二氧化碳 、P-N異質結構 、奈米反應器 |
外文關鍵詞: | Photocatalytic, photoelectrocatalytic, CO2, Cu2O, TiO2, p-n heterojunctions, core-shell nanoparticles, yolk-shell nanoreactors |
相關次數: | 點閱:101 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著大量化石燃料的使用以及大氣中CO2濃度持續增加,造成能源危機與全球均溫提升。因此,CO2 減量成為國際間致力於的目標,本研究重點是開發新型光觸媒,用於光催化與光電催化降解CO2還原生成低碳燃料,並且探討光觸媒在光催化與光電催化反應扮演之角色。
Cu2O/TiO2異質結構(heterojunction)應用於光催化還原CO2, Cu2O/TiO2可促使吸收光紅移至可見光區域,並促進電子電洞對分離。經過6小時紫外光照射後,Cu2O/TiO2可以產生21-70 µmol/g-catalyst之甲醇產物,實驗結果顯示Cu2O/TiO2可有效提高光催化效率。
利用醣類螯合物(-cyclodextrin (CD)) 與Ag+及Cu2+碳化生成(Ag/Cu2O)@C奈米核殼(core-shell)物質,另外,使用酸萃取部分核心金屬以形成(Ag/Cu2O)@C奈米反應器(yolk-shell)。 以電子顯微鏡(TEM)觀察(Ag/Cu2O)@C奈米反應器(yolk-shell),發現直徑約14-25 nm的(Ag/Cu2O)奈米粒子包覆在碳殼內。以(Ag/Cu2O)@C奈米核殼(core-shell) 之6小時光催化,CO2轉化生成7-19 µmol/g-catalyst之甲醇產物,實驗結果顯示Ag可充當電子捕捉劑並提升光催化效率。在奈米反應器碳殼內提供更多空間使反應物碰撞頻率大幅增加,因此得獲更高的甲醇產率(74.7 µmol/g-catalyst)。
由於光生電子電洞對易於快速再結合,因此於光催化下施加外部偏壓以增加載子分離速率。利用電鍍法製備Cu2O/TiO2異質結構(heterojunction)光電極,應用於光電催化還原CO2轉化成低碳燃料。由可見光紫外光分光光譜發現Cu2O/TiO2能隙降低,並在線性掃描伏安法中呈現出較高光電流密度。通過電化學阻抗譜(EIS)及Mott-Schottky曲線觀察Cu2O/TiO2有較小的電子轉移電阻與能帶彎曲減小,因此可促進界面電荷傳輸。在6小時紫外光光電催化下,CO2轉化生成11.13 μmol/cm2之甲醇產物,並且法拉第效率(faradaic efficiency)達到88%。
With the high fossil fuel consumption and high carbon dioxide (CO2) emission to the atmosphere has caused energy crisis and global warming. The photocatalytic and photoelectrocatalytic reduction of CO2 to low-carbon fuels, such as methane, methanol, formaldehyde and formic acid, become one of promising solutions. Therefore, preparing of novel photocatalysts for reduction of CO2 by photocatalysis and photoelectrocatalysis were investigated in this study.
The Cu2O/TiO2 heterojunctions were prepared by a facile soft chemical method, which was used for photocatalytic reduction of CO2. The Cu2O/TiO2 heterojunctions cause a red-shift to visible light region and improve separation of photogenerated electron-hole pairs. After a 6-h UV-vis irradiation, 21-70 µmol methanol/g-catalyst can be generated by the Cu2O/TiO2 heterojunctions, suggesting that Cu2O in junction with TiO2 may enhance the photocatalytic efficiency.
Carbonization of Ag+ and Cu2+ with -cyclodextrin (CD) to yield the (Ag/Cu2O)@C core-shell nanoparticles were used for photocatalytic reduction of CO2. Moreover, the core metals were partially etched to form the (Ag/Cu2O)@C yolk-shell nanoreactors. The diameters of the core (Ag/Cu2O) in the (Ag/Cu2O)@C yolk-shell nanoreactors are 14-25 nm observed by TEM images. Under a 6-h light irradiation, 7-19 µmol/g-catalyst of methanol are yielded by the (Ag/Cu2O)@C core-shell nanoparticles, indicating Ag deposited on Cu2O acting as electron sinks leads to a better photocatalytic efficiency. More methanol up to 74.7 µmol/g-catalyst can be obtained by the (Ag/Cu2O)@C yolk-shell nanoreactors. It seems that the (Ag/Cu2O)@C yolk-shell nanoreactor provides more space within the carbon-shell, which facilitates the methanol formation, and thus a higher yield of methanol can be achieved.
To reduce the rapid recombination rate of the photogenerated electron-hole pairs, the Cu2O/TiO2 heterojunction photoelectrode were prepared for photoelectrocatalytic reduction of CO2. The Cu2O/TiO2 heterojunctions have a low bandgap energy and present a high photocurrent density in the linear sweep voltammetry. By EIS and Mott-Schottky plots, the Cu2O/TiO2 heterojunctions show a less electron transfer resistance and a decrease in band bending as the heterostructure may promote the interfacial charge transport. After UV-vis illumination for 6 h, 11.13 μmol/cm2 of methanol are yielded and the faradaic efficiency can reach 88% by the Cu2O/TiO2 heterojunction films.
Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., & Idem, R. (2003a). Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science, 58(23-24), 5195-5210.
Aboudheir, A., Tontiwachwuthikul, P., Chakma, A., & Idem, R. (2003b). Kinetics of the reactive absorption of carbon dioxide in high CO 2-loaded, concentrated aqueous monoethanolamine solutions. Chemical Engineering Science, 58(23), 5195-5210.
Antoniadou, M., Daskalaki, V. M., Balis, N., Kondarides, D. I., Kordulis, C., & Lianos, P. (2011). Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts. Applied Catalysis B: Environmental, 107(1-2), 188-196.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 293(5528), 269-271.
Ashley, A. E., Thompson, A. L., & O'Hare, D. (2009). Non‐Metal‐Mediated Homogeneous Hydrogenation of CO2 to CH3OH. Angewandte Chemie International Edition, 48(52), 9839-9843.
Bando, K. K., Sayama, K., Kusama, H., Okabe, K., & Arakawa, H. (1997). In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2. Applied Catalysis A: General, 165(1), 391-409.
Banerjee, S., Mohapatra, S. K., Das, P. P., & Misra, M. (2008). Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS. Chemistry of materials, 20(21), 6784-6791.
Barton, E. E., Rampulla, D. M., & Bocarsly, A. B. (2008). Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. Journal of the American Chemical Society, 130(20), 6342-6344.
Baumeister, P. W. (1961). Optical Absorption of Cuprous Oxide. Physical Review, 121(2), 359-362.
Benson, S., Bennaceur, K., Cook, P., Davison, J., de Coninck, H., Farhat, K., Ramirez, C., Simbeck, D., Surles, T., & Verma, P. (2012). Carbon capture and storage. Global Energy Assessment-Toward a Sustainable Future, 993.
Berardi, S., Drouet, S., Francas, L., Gimbert-Suriñach, C., Guttentag, M., Richmond, C., Stoll, T., & Llobet, A. (2014). Molecular artificial photosynthesis. Chemical Society Reviews, 43(22), 7501-7519.
Bessekhouad, Y., Robert, D., & Weber, J.-V. (2005). Photocatalytic activity of Cu 2 O/TiO 2, Bi 2 O 3/TiO 2 and ZnMn 2 O 4/TiO 2 heterojunctions. Catalysis Today, 101(3), 315-321.
Bhandary, N., Singh, A. P., Ingole, P. P., & Basu, S. (2016). Enhanced photoelectrochemical performance of electrodeposited hematite films decorated with nanostructured NiMnO x. RSC Advances, 6(42), 35239-35247.
Botta, S. G., Navı́o, J. A., Hidalgo, M. a. C., Restrepo, G. M., & Litter, M. I. (1999). Photocatalytic properties of ZrO2 and Fe/ZrO2 semiconductors prepared by a sol–gel technique. Journal of Photochemistry and Photobiology A: Chemistry, 129(1), 89-99.
Cai, Y. Y., Li, X. H., Zhang, Y. N., Wei, X., Wang, K. X., & Chen, J. S. (2013). Highly Efficient Dehydrogenation of Formic Acid over a Palladium‐Nanoparticle‐Based Mott–Schottky Photocatalyst. Angewandte Chemie, 125(45), 12038-12041.
Carey, J. H., Lawrence, J., & Tosine, H. M. (1976). Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology, 16(6), 697-701.
Chan, S. H. S., Yeong Wu, T., Juan, J. C., & Teh, C. Y. (2011). Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste‐water. Journal of Chemical Technology and Biotechnology, 86(9), 1130-1158.
Chaudhary, Y. S., Woolerton, T. W., Allen, C. S., Warner, J. H., Pierce, E., Ragsdale, S. W., & Armstrong, F. A. (2012). Visible light-driven CO 2 reduction by enzyme coupled CdS nanocrystals. Chemical Communications, 48(1), 58-60.
Chen, H.-T., Musaev, D. G., & Lin, M. (2008). Adsorption and Dissociation of CO x (x= 1, 2) on W (111) Surface: A Computational Study. The Journal of Physical Chemistry C, 112(9), 3341-3348.
Chen, H., Chen, S., Quan, X., Yu, H., Zhao, H., & Zhang, Y. (2008). Fabrication of TiO2− Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution. The Journal of Physical Chemistry C, 112(25), 9285-9290.
Chen, X., & Burda, C. (2004). Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. The Journal of Physical Chemistry B, 108(40), 15446-15449.
Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based photocatalytic hydrogen generation. Chemical reviews, 110(11), 6503-6570.
Chen, Z., Tang, Y., Liu, C., Leung, Y., Yuan, G., Chen, L., Wang, Y., Bello, I., Zapien, J., & Zhang, W. (2009). Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. The Journal of Physical Chemistry C, 113(30), 13433-13437.
Cheng, J., Hu, P., Ellis, P., French, S., Kelly, G., & Lok, C. M. (2009). An Energy Descriptor To Quantify Methane Selectivity in Fischer− Tropsch Synthesis: A Density Functional Theory Study. The Journal of Physical Chemistry C, 113(20), 8858-8863.
Cheng, J., Hu, P., Ellis, P., French, S., Kelly, G., & Lok, C. M. (2010). Some understanding of Fischer–Tropsch synthesis from density functional theory calculations. Topics in Catalysis, 53(5-6), 326-337.
Cheng, J., Zhang, M., Wu, G., Wang, X., Zhou, J., & Cen, K. (2014). Photoelectrocatalytic Reduction of CO2 into Chemicals Using Pt-Modified Reduced Graphene Oxide Combined with Pt-Modified TiO2 Nanotubes. Environmental Science & Technology, 48(12), 7076-7084.
Daghrir, R., Drogui, P., & Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: a review. Industrial & Engineering Chemistry Research, 52(10), 3581-3599.
Das, K., & De, S. (2009). Optical and photoconductivity studies of Cu 2 O nanowires synthesized by solvothermal method. Journal of Luminescence, 129(9), 1015-1022.
Djurišić, A. B., Leung, Y. H., & Ng, A. M. C. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 1(4), 400-410.
Du, K., Liu, G., Chen, X., & Wang, K. (2018). Nanotube Heterostructures MoS2/CdS/TiO2 for CO2 Conversion. ECS Transactions, 85(10), 47-56.
Duret, A., & Grätzel, M. (2005). Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis. The Journal of Physical Chemistry B, 109(36), 17184-17191.
Faunce, T., Styring, S., Wasielewski, M. R., Brudvig, G. W., Rutherford, A. W., Messinger, J., Lee, A. F., Hill, C. L., Fontecave, M., & MacFarlane, D. R. (2013). Artificial photosynthesis as a frontier technology for energy sustainability. Energy & Environmental Science, 6(4), 1074-1076.
Friedlingstein, P., Houghton, R. A., Marland, G., Hackler, J., Boden, T. A., Conway, T. J., Canadell, J. G., Raupach, M. R., Ciais, P., & Le Quéré, C. (2010). Update on CO2 emissions. Nature Geoscience, 3(12), 811-812.
Fujishima, A., Hashimoto, K., & Watanabe, T. (1999). TiO2 Photocatalysis: Fundamentals and Applications: BKC.
Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38.
Fujita, E. (1999). Photochemical carbon dioxide reduction with metal complexes. Coordination chemistry reviews, 185, 373-384.
Gao, C., Chen, S., Wang, Y., Wang, J., Zheng, X., Zhu, J., Song, L., Zhang, W., & Xiong, Y. (2018). Heterogeneous Single‐Atom Catalyst for Visible‐Light‐Driven High‐Turnover CO2 Reduction: The Role of Electron Transfer. Advanced Materials, 30(13), 1704624.
Gibbins, J., & Chalmers, H. (2008). Carbon capture and storage. Energy policy, 36(12), 4317-4322.
González-Rodríguez, D., Carbonell, E., Rojas, G. d. M., Castellanos, C. A., Guldi, D. M., & Torres, T. (2010). Activating Multistep Charge-Transfer Processes in Fullerene−Subphthalocyanine−Ferrocene Molecular Hybrids as a Function of π−π Orbital Overlap. Journal of the American Chemical Society, 132(46), 16488-16500.
Goren, Z., Willner, I., Nelson, A. J., & Frank, A. J. (1990). Selective photoreduction of carbon dioxide/bicarbonate to formate by aqueous suspensions and colloids of palladium-titania. The Journal of Physical Chemistry, 94(9), 3784-3790.
Grahn, H. T. (1999). Introduction to semiconductor physics: World Scientific Publishing Co Inc.
Gu, J., Wuttig, A., Krizan, J. W., Hu, Y., Detweiler, Z. M., Cava, R. J., & Bocarsly, A. B. (2013). Mg-Doped CuFeO2 photocathodes for photoelectrochemical reduction of carbon dioxide. The Journal of Physical Chemistry C, 117(24), 12415-12422.
Guan, G., Kida, T., & Yoshida, A. (2003). Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Applied Catalysis B: Environmental, 41(4), 387-396.
Habisreutinger, S. N., Schmidt‐Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408.
Halmann, M. (1978). Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature, 275(5676), 115.
Halmann, M. (1978). Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature, 275, 115.
Hammarström, L., & Styring, S. (2011). Proton-coupled electron transfer of tyrosines in Photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer. Energy & Environmental Science, 4(7), 2379-2388.
Han, E., Hu, F., Zhang, S., Luan, B., Li, P., Sun, H., & Wang, S. (2018). Worm-like FeS2/TiO2 Nanotubes for Photoelectrocatalytic Reduction of CO2 to Methanol under Visible Light. Energy & Fuels, 32(4), 4357-4363.
Hirano, K., Inoue, K., & Yatsu, T. (1992). Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. Journal of Photochemistry and Photobiology A: Chemistry, 64(2), 255-258.
Hu, C.-C., Nian, J.-N., & Teng, H. (2008). Electrodeposited p-type Cu 2 O as photocatalyst for H 2 evolution from water reduction in the presence of WO 3. Solar Energy Materials and Solar Cells, 92(9), 1071-1076.
Hu, Y., Li, D., Zheng, Y., Chen, W., He, Y., Shao, Y., Fu, X., & Xiao, G. (2011). BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Applied Catalysis B: Environmental, 104(1-2), 30-36.
Huang, C.-H., Wang, H. P., Chang, J.-E., & Eyring, E. M. (2009). Synthesis of nanosize-controllable copper and its alloys in carbon shells. Chemical Communications(31), 4663-4665.
Hung, C.-H., & Mariñas, B. J. (1997a). Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films. Environmental Science & Technology, 31(5), 1440-1445.
Hung, C.-H., & MariÑas, B. J. (1997b). Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films. Environmental Science & Technology, 31(2), 562-568.
Inoue, H., Moriwaki, H., Maeda, K., & Yoneyama, H. (1995). Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals. Journal of Photochemistry and Photobiology A: Chemistry, 86(1), 191-196.
Inoue, T., Fujishima, A., Konishi, S., & Honda, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637-638.
Iqbal, M., Wang, Y., Hu, H., He, M., Shah, A. H., Li, P., Lin, L., Woldu, A. R., & He, T. (2018). Interfacial charge kinetics of ZnO/ZnTe heterostructured nanorod arrays for CO2 photoreduction. Electrochimica Acta, 272, 203-211.
Ishitani, Osamu, Inoue, C., Suzuki, Y., & Ibusuki, T. (1993). Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 72(3), 269-271.
Ishizuka, S., Maruyama, T., & Akimoto, K. (2000). Thin-film deposition of Cu2O by reactive radio-frequency magnetron sputtering. Japanese Journal of Applied Physics, 39(8A), L786.
Jang, J. S., Kim, H. G., & Lee, J. S. (2012). Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catalysis Today, 185(1), 270-277.
Jiang, J., Zhang, X., Sun, P., & Zhang, L. (2011). ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. The Journal of Physical Chemistry C, 115(42), 20555-20564.
Jiang, X., Gou, F., Chen, F., & Jing, H. (2016). Cycloaddition of epoxides and CO 2 catalyzed by bisimidazole-functionalized porphyrin cobalt (iii) complexes. Green Chemistry, 18(12), 3567-3576.
Jordal, K., Anheden, M., Yan, J., & Strömberg, L. (2005). Oxyfuel combustion for coal-fired power generation with CO2 capture-Opportunities and challenges (Vol. 1).
Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C., & Scheel, H. J. (1996). Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase. Journal of the American Chemical Society, 118(28), 6716-6723.
Khan, M. M., Adil, S. F., & Al-Mayouf, A. (2015). Metal oxides as photocatalysts: Elsevier.
Khan, S. U., Al-Shahry, M., & Ingler, W. B. (2002). Efficient photochemical water splitting by a chemically modified n-TiO2. science, 297(5590), 2243-2245.
Kim, D., Sakimoto, K. K., Hong, D., & Yang, P. (2015). Artificial photosynthesis for sustainable fuel and chemical production. Angewandte Chemie International Edition, 54(11), 3259-3266.
Kim, Y.-S., Rai, P., & Yu, Y.-T. (2013). Microwave assisted hydrothermal synthesis of Au@ TiO2 core–shell nanoparticles for high temperature CO sensing applications. Sensors and Actuators B: Chemical, 186, 633-639.
Kittel, C. (1976). Introduction to Solid State Physics (5th Edition), 341.
Kobayakawa, K., Murakami, Y., & Sato, Y. (2005). Visible-light active N-doped TiO 2 prepared by heating of titanium hydroxide and urea. Journal of Photochemistry and Photobiology A: Chemistry, 170(2), 177-179.
Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., & Yoshida, S. (1999). Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO 2. Journal of Photochemistry and Photobiology A: Chemistry, 126(1), 117-123.
Kondo, J. (1998). Cu 2 O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications(3), 357-358.
Korzhavyi, P. A., & Johansson, B. (2011). Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation: Swedish Nuclear Fuel and Waste Management Company.
Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry A, 115(46), 13211-13241.
Lalitha, K., Sadanandam, G., Kumari, V. D., Subrahmanyam, M., Sreedhar, B., & Hebalkar, N. Y. (2010). Highly Stabilized and Finely Dispersed Cu2O/TiO2: A Promising Visible Sensitive Photocatalyst for Continuous Production of Hydrogen from Glycerol:Water Mixtures. The Journal of Physical Chemistry C, 114(50), 22181-22189.
Lee, C., Shin, K., Lee, Y. J., Jung, C., & Lee, H. M. (2017). Effects of shell thickness on Ag-Cu2O core-shell nanoparticles with bumpy structures for enhancing photocatalytic activity and stability. Catalysis Today.
Lee, H.-S., Woo, C.-S., Youn, B.-K., Kim, S.-Y., Oh, S.-T., Sung, Y.-E., & Lee, H.-I. (2005). Bandgap modulation of TiO 2 and its effect on the activity in photocatalytic oxidation of 2-isopropyl-6-methyl-4-pyrimidinol. Topics in Catalysis, 35(3), 255-260.
Lee, Y. Y., Jung, H. S., & Kang, Y. T. (2017). A review: Effect of nanostructures on photocatalytic CO 2 conversion over metal oxides and compound semiconductors. Journal of CO2 Utilization, 20, 163-177.
Lewerenz, H., Heine, C., Skorupska, K., Szabo, N., Hannappel, T., Vo-Dinh, T., Campbell, S., Klemm, H., & Munoz, A. (2010). Photoelectrocatalysis: principles, nanoemitter applications and routes to bio-inspired systems. Energy & Environmental Science, 3(6), 748-760.
Li, J., Cushing, S. K., Bright, J., Meng, F., Senty, T. R., Zheng, P., Bristow, A. D., & Wu, N. (2012). Ag@ Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. Acs Catalysis, 3(1), 47-51.
Li, J., Liu, L., Yu, Y., Tang, Y., Li, H., & Du, F. (2004). Preparation of highly photocatalytic active nano-size TiO2–Cu2O particle composites with a novel electrochemical method. Electrochemistry Communications, 6(9), 940-943.
Li, Q., & Shang, J. K. (2010). Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance. Environmental Science & Technology, 44(9), 3493-3499.
Liao, F., Huang, Y., Ge, J., Zheng, W., Tedsree, K., Collier, P., Hong, X., & Tsang, S. C. (2011). Morphology‐Dependent Interactions of ZnO with Cu Nanoparticles at the Materials’ Interface in Selective Hydrogenation of CO2 to CH3OH. Angewandte Chemie International Edition, 50(9), 2162-2165.
Lin, P., Chen, X., Yan, X., Zhang, Z., Yuan, H., Li, P., Zhao, Y., & Zhang, Y. (2014). Enhanced photoresponse of Cu 2 O/ZnO heterojunction with piezo-modulated interface engineering. Nano Research, 7(6), 860-868.
Lindgren, T., Mwabora, J. M., Avendaño, E., Jonsson, J., Hoel, A., Granqvist, C.-G., & Lindquist, S.-E. (2003). Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. The Journal of Physical Chemistry B, 107(24), 5709-5716.
Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735-758.
Liu, C., Dasgupta, N. P., & Yang, P. (2013). Semiconductor nanowires for artificial photosynthesis. Chemistry of materials, 26(1), 415-422.
Liu, C., Gallagher, J. J., Sakimoto, K. K., Nichols, E. M., Chang, C. J., Chang, M. C. Y., & Yang, P. (2015). Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals. Nano Letters, 15(5), 3634-3639.
Liu, J., Niu, Y., He, X., Qi, J., & Li, X. (2016). Photocatalytic reduction of CO 2 using TiO 2-graphene nanocomposites. Journal of Nanomaterials, 2016, 1.
Liu, R., Yeh, Y.-W., Tam, V. H., Qu, F., Yao, N., & Priestley, R. D. (2014). One-pot Stöber route yields template for Ag@ carbon yolk–shell nanostructures. Chemical Communications, 50(65), 9056-9059.
Liu, S., Yang, L., Xu, S., Luo, S., & Cai, Q. (2009). Photocatalytic activities of C–N-doped TiO 2 nanotube array/carbon nanorod composite. Electrochemistry Communications, 11(9), 1748-1751.
Liu, W., Chen, G., He, G., & Zhang, W. (2011). Synthesis of starfish-like Cu2O nanocrystals through γ-irradiation and their application in lithium-ion batteries. Journal of Nanoparticle Research, 13(7), 2705.
Liu, Y., Jiang, Y., Li, F., Yu, F., Jiang, W., & Xia, L. (2018). Molecular cobalt salophen catalyst-integrated BiVO 4 as stable and robust photoanodes for photoelectrochemical water splitting. Journal of Materials Chemistry A.
Liu, Y., Li, J., Li, W., Yang, Y., Li, Y., & Chen, Q. (2015). Enhancement of the Photoelectrochemical Performance of WO3 Vertical Arrays Film for Solar Water Splitting by Gadolinium Doping. The Journal of Physical Chemistry C, 119(27), 14834-14842.
Liu, Y., Zhou, H., Li, J., Chen, H., Li, D., Zhou, B., & Cai, W. (2010). Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Letters, 2(4), 277-284.
Lo, C.-C., Hung, C.-H., Yuan, C.-S., & Wu, J.-F. (2007). Photoreduction of carbon dioxide with H 2 and H 2 O over TiO 2 and ZrO 2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells, 91(19), 1765-1774.
Ma, K., Yehezkeli, O., He, L., & Cha, J. N. (2018). DNA for Assembly and Charge Transport Photocatalytic Reduction of CO2. Advanced Sustainable Systems, 2(4), 1700156.
Meiri, N., Radus, R., & Herskowitz, M. (2017). Simulation of novel process of CO 2 conversion to liquid fuels. Journal of CO2 Utilization, 17, 284-289.
Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 3(1), 43-81.
Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35.
Miyasaka, T., Watanabe, T., Fujishima, A., & Honda, K. (1979). Highly efficient quantum conversion at chlorophyll a–lecithin mixed monolayer coated electrodes. Nature, 277, 638.
Miyase, Y., Takasugi, S., Iguchi, S., Miseki, Y., Gunji, T., Sasaki, K., Fujita, E., & Sayama, K. (2018). Modification of BiVO 4/WO 3 composite photoelectrodes with Al 2 O 3 via chemical vapor deposition for highly efficient oxidative H 2 O 2 production from H 2 O. Sustainable Energy & Fuels.
Musselman, K. P., Marin, A., Wisnet, A., Scheu, C., MacManus‐Driscoll, J. L., & Schmidt‐Mende, L. (2011). A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO‐Cu2O Photovoltaics. Advanced Functional Materials, 21(3), 573-582.
Nagasubramanian, G., Gioda, A. S., & Bard, A. J. (1981). Semiconductor Electrodes XXXVII. Photoelectrochemical Behavior of p‐Type in Acetonitrile Solutions. Journal of the Electrochemical Society, 128(10), 2158-2164.
Nichols, E. M., Gallagher, J. J., Liu, C., Su, Y., Resasco, J., Yu, Y., Sun, Y., Yang, P., Chang, M. C., & Chang, C. J. (2015). Hybrid bioinorganic approach to solar-to-chemical conversion. Proceedings of the National Academy of Sciences, 112(37), 11461-11466.
Nikolaou, K. (1999). Emissions reduction of high and low polluting new technology vehicles equipped with a CeO2 catalytic system. Science of The Total Environment, 235(1), 71-76.
Nitta, Y., Suwata, O., Ikeda, Y., Okamoto, Y., & Imanaka, T. (1994). Copper-zirconia catalysts for methanol synthesis from carbon dioxide: Effect of ZnO addition to Cu-ZrO 2 catalysts. Catalysis letters, 26(3), 345-354.
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., & Matsumura, M. (2004). Preparation of S-doped TiO 2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 265(1), 115-121.
Okabe, K., Sayama, K., Matsubayashi, N., Shimomura, K. y., & Arakawa, H. (1992). Selective Hydrogenation of Carbon Dioxide to Methanol on Cu–ZnO/SiO2 Catalysts Prepared by Alkoxide Method. Bulletin of the Chemical Society of Japan, 65(9), 2520-2525.
Ouyang, J., Chang, M., & Li, X. (2012). CdS-sensitized ZnO nanorod arrays coated with TiO2 layer for visible light photoelectrocatalysis. Journal of Materials Science, 47(9), 4187-4193.
Peng, Y.-P., Yeh, Y.-T., Shah, S. I., & Huang, C. (2012). Concurrent photoelectrochemical reduction of CO2 and oxidation of methyl orange using nitrogen-doped TiO2. Applied Catalysis B: Environmental, 123, 414-423.
Pour, A. N., Housaindokht, M. R., Tayyari, S. F., & Zarkesh, J. (2010). Fischer-Tropsch synthesis by nano-structured iron catalyst. Journal of Natural Gas Chemistry, 19(3), 284-292.
Rai, P., Khan, R., Raj, S., Majhi, S. M., Park, K.-K., Yu, Y.-T., Lee, I.-H., & Sekhar, P. K. (2014). Au@ Cu 2 O core–shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance. Nanoscale, 6(1), 581-588.
Rakhshani, A. (1986). Preparation, characteristics and photovoltaic properties of cuprous oxide—a review. Solid-State Electronics, 29(1), 7-17.
Reutergådh, L. B., & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: A comparison between TiO 2 and us photocatalysis. Chemosphere, 35(3), 585-596.
Robert, D. (2007). Photosensitization of TiO 2 by M x O y and M x S y nanoparticles for heterogeneous photocatalysis applications. Catalysis Today, 122(1), 20-26.
Ros, C., Fabrega, C., Monllor-Satoca, D., Hernández-Alonso, M. D., Penelas-Pérez, G., Morante, J. R., & Andreu, T. (2018). Hydrogenation and Structuration of TiO2 Nanorods Photoanodes: Doping Level and the Effect of Illumination in Trap-States Filling. The Journal of Physical Chemistry C.
Sagara, N., Kamimura, S., Tsubota, T., & Ohno, T. (2016). Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Applied Catalysis B: Environmental, 192, 193-198.
Sahara, G., Kumagai, H., Maeda, K., Kaeffer, N., Artero, V., Higashi, M., Abe, R., & Ishitani, O. (2016). Photoelectrochemical Reduction of CO2 Coupled to Water Oxidation Using a Photocathode with a Ru (II)–Re (I) Complex Photocatalyst and a CoO x/TaON Photoanode. Journal of the American Chemical Society, 138(42), 14152-14158.
Saito, M. (1998). R&D activities in Japan on methanol synthesis from CO2 and H2. Catalysis Surveys from Asia, 2(2), 175-184.
Sakurai, H., Tsubota, S., & Haruta, M. (1993). Hydrogenation of CO2 over gold supported on metal oxides. Applied Catalysis A: General, 102(2), 125-136.
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 114(19), 9919-9986.
Sharma, K., Maiti, K., Kim, N. H., Hui, D., & Lee, J. H. (2018). Green synthesis of glucose-reduced graphene oxide supported Ag-Cu2O nanocomposites for the enhanced visible-light photocatalytic activity. Composites Part B: Engineering, 138, 35-44.
Shinagawa, T., Cao, Z., Cavallo, L., & Takanabe, K. (2017). Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces. Journal of Energy Chemistry, 26(2), 259-269.
Siripala, W., Ivanovskaya, A., Jaramillo, T. F., Baeck, S.-H., & McFarland, E. W. (2003). A Cu 2 O/TiO 2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials and Solar Cells, 77(3), 229-237.
Skrzypek, J., Lachowska, M., & Serafin, D. (1990). Methanol synthesis from CO2 and H2: dependence of equilibrium conversions and exit equilibrium concentrations of components on the main process variables. Chemical Engineering Science, 45(1), 89-96.
Song, X.-M., Yuan, C., Wang, Y., Wang, B., Mao, H., Wu, S., & Zhang, Y. (2018). ZnO/CuO photoelectrode with np heterogeneous structure for photoelectrocatalytic oxidation of formaldehyde. Applied Surface Science.
Steeneveldt, R., Berger, B., & Torp, T. (2006). CO2 capture and storage: closing the knowing–doing gap. Chemical Engineering Research and Design, 84(9), 739-763.
Sun, K., Kuang, Y., Verlage, E., Brunschwig, B. S., Tu, C. W., & Lewis, N. S. (2015). Sputtered NiOx Films for Stabilization of p+ n‐InP Photoanodes for Solar‐Driven Water Oxidation. Advanced Energy Materials, 5(11).
Sun, W.-T., Yu, Y., Pan, H.-Y., Gao, X.-F., Chen, Q., & Peng, L.-M. (2008). CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal of the American Chemical Society, 130(4), 1124-1125.
Szaniawska, E., Bienkowski, K., Rutkowska, I. A., Kulesza, P. J., & Solarska, R. (2018). Enhanced photoelectrochemical CO2-reduction system based on mixed Cu2O–nonstoichiometric TiO2 photocathode. Catalysis Today, 300, 145-151.
Tachibana, Y., Vayssieres, L., & Durrant, J. R. (2012). Artificial photosynthesis for solar water-splitting. Nature Photonics, 6(8), 511.
Tada, H., Mitsui, T., Kiyonaga, T., Akita, T., & Tanaka, K. (2006). All-solid-state Z-scheme in CdS–Au–TiO 2 three-component nanojunction system. Nature Materials, 5(10), 782.
Tagawab, T., Pleizier, G., & Amenomiya, Y. (1985). Methanol synthesis from CO2+H2 I. characterization of catalysts by TPD. Applied Catalysis, 18(2), 285-293.
Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y., & Funabiki, T. (2004). Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. The Journal of Physical Chemistry B, 108(1), 346-354.
Tominaga, K.-i., Sasaki, Y., Kawai, M., Watanabe, T., & Saito, M. (1993). Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane. Journal of the Chemical Society, Chemical Communications(7), 629-631.
Tominaga, K.-i., Sasaki, Y., Watanabe, T., & Saito, M. (1995). Homogeneous Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Ruthenium Cluster Anions in the Presence of Halide Anions. Bulletin of the Chemical Society of Japan, 68(10), 2837-2842.
Torres, G. R., Lindgren, T., Lu, J., Granqvist, C.-G., & Lindquist, S.-E. (2004). Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. The Journal of Physical Chemistry B, 108(19), 5995-6003.
Tseng, I. H., Chang, W.-C., & Wu, J. C. S. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37(1), 37-48.
Umebayashi, T., Yamaki, T., Itoh, H., & Asai, K. (2002). Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 81(3), 454-456.
Van Der Laan, G. P., & Beenackers, A. (1999). Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catalysis Reviews, 41(3-4), 255-318.
Vesselli, E., Rogatis, L. D., Ding, X., Baraldi, A., Savio, L., Vattuone, L., Rocca, M., Fornasiero, P., Peressi, M., & Baldereschi, A. (2008). Carbon dioxide hydrogenation on Ni (110). Journal of the American Chemical Society, 130(34), 11417-11422.
Vieira, G. B., José, H. J., Peterson, M., Baldissarelli, V. Z., Alvarez, P., & Moreira, R. d. F. P. M. (2018). CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 353, 325-336.
Vijayraghavan, R., Pas, S. J., Izgorodina, E. I., & MacFarlane, D. R. (2013). Diamino protic ionic liquids for CO 2 capture. Physical Chemistry Chemical Physics, 15(46), 19994-19999.
Wang, H., Bai, Y., Zhang, H., Zhang, Z., Li, J., & Guo, L. (2010). CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. The Journal of Physical Chemistry C, 114(39), 16451-16455.
Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., & Wang, X. (2014). Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 43(15), 5234-5244.
Wang, L., Wang, W., Chen, Y., Yao, L., Zhao, X., Shi, H., Cao, M., & Liang, Y. (2018). Heterogeneous p–n Junction CdS/Cu2O Nanorod Arrays: Synthesis and Superior Visible-Light-Driven Photoelectrochemical Performance for Hydrogen Evolution. ACS Applied Materials & Interfaces, 10(14), 11652-11662.
Wang, M., Sun, L., Lin, Z., Cai, J., Xie, K., & Lin, C. (2013). p–n Heterojunction photoelectrodes composed of Cu 2 O-loaded TiO 2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy & Environmental Science, 6(4), 1211-1220.
Wang, P., Wang, S., Wang, H., Wu, Z., & Wang, L. (2018). Recent Progress on Photo‐Electrocatalytic Reduction of Carbon Dioxide. Particle & Particle Systems Characterization.
Wang, X., Fan, H., & Ren, P. (2013). Self-assemble flower-like SnO2/Ag heterostructures: correlation among composition, structure and photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 419, 140-146.
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., & Antonietti, M. (2011). A metal-free polymeric photocatalyst for hydrogen production from water under visible light Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (pp. 271-275): World Scientific.
Wang, Y.-G., Yoon, Y., Glezakou, V.-A., Li, J., & Rousseau, R. (2013). The role of reducible oxide–metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. Journal of the American Chemical Society, 135(29), 10673-10683.
Wei, S., Shi, J., Ren, H., Li, J., & Shao, Z. (2013). Fabrication of Ag/Cu2O composite films with a facile method and their photocatalytic activity. Journal of Molecular Catalysis A: Chemical, 378, 109-114.
Wells, A. F. (1984). Oxford University Press; 5 edition.
Woolerton, T. W., Sheard, S., Reisner, E., Pierce, E., Ragsdale, S. W., & Armstrong, F. A. (2010). Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. Journal of the American Chemical Society, 132(7), 2132-2133.
Wrighton, M. S., Morse, D. L., Ellis, A. B., Ginley, D. S., & Abrahamson, H. B. (1976). Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode. Journal of the American Chemical Society, 98(1), 44-48.
Wyckoff, R. W. G. (1965). Crystal structures. Volume I. Volume I: John Wiley and Sons.
Xie, S., Zhang, Q., Liu, G., & Wang, Y. (2016). Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem Commun (Camb), 52(1), 35-59.
Xie, S., Zhang, Q., Liu, G., & Wang, Y. (2016). Photocatalytic and photoelectrocatalytic reduction of CO 2 using heterogeneous catalysts with controlled nanostructures. Chemical Communications, 52(1), 35-59.
Xiong, Z., Luo, Y., Zhao, Y., Zhang, J., Zheng, C., & Wu, J. C. (2016). Synthesis, characterization and enhanced photocatalytic CO 2 reduction activity of graphene supported TiO 2 nanocrystals with coexposed {001} and {101} facets. Physical Chemistry Chemical Physics, 18(19), 13186-13195.
Xu, Y., Jia, Y., Zhang, Y., Nie, R., Zhu, Z., Wang, J., & Jing, H. (2017). Photoelectrocatalytic reduction of CO 2 to methanol over the multi-functionalized TiO 2 photocathodes. Applied Catalysis B: Environmental, 205, 254-261.
Xu, Z., Qian, Z., Mao, L., Tanabe, K., & Hattori, H. (1991). Methanol Synthesis from CO2 and H2 over CuO–ZnO Catalysts Combined with Metal Oxides under 13 atm Pressure. Bulletin of the Chemical Society of Japan, 64(5), 1658-1663.
Yamagata, S., Nishijo, M., Murao, N., Ohta, S., & Mizoguchi, I. (1995). CO2 reduction to CH4 with H2 on photoirradiated TS-1. Zeolites, 15(6), 490-493.
Yamashita, H., Ichihashi, Y., Takeuchi, M., Kishiguchi, S., & Anpo, M. (1999). Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. Journal of synchrotron radiation, 6(3), 451-452.
Yang, J., Li, Z., Zhao, C., Wang, Y., & Liu, X. (2014). Facile synthesis of Ag–Cu2O composites with enhanced photocatalytic activity. Materials Research Bulletin, 60, 530-536.
Yang, J., Wang, D., Han, H., & Li, C. (2013). Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of chemical research, 46(8), 1900-1909.
Yang, L., He, D., Cai, Q., & Grimes, C. A. (2007). Fabrication and catalytic properties of Co− Ag− Pt nanoparticle-decorated titania nanotube arrays. The Journal of Physical Chemistry C, 111(23), 8214-8217.
Yang, X., Xin, W., Yin, X., & Shao, X. (2016). Enhancement of photocatalytic activity in reducing CO 2 over CdS/gC 3 N 4 composite catalysts under UV light irradiation. Chemical Physics Letters, 651, 127-132.
Ye, M., Wang, X., Liu, E., Ye, J., & Wang, D. (2018). Boosting the Photocatalytic Activity of P25 for Carbon Dioxide Reduction by using a Surface‐Alkalinized Titanium Carbide MXene as Cocatalyst. ChemSusChem.
Yu, Y., Zhang, L., Wang, J., Yang, Z., Long, M., Hu, N., & Zhang, Y. (2012). Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation. Nanoscale research letters, 7(1), 347.
Yuan, Z., Eden, M. R., & Gani, R. (2015). Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Industrial & Engineering Chemistry Research, 55(12), 3383-3419.
Yue, Y., Chen, M., Ju, Y., & Zhang, L. (2012). Stress-induced growth of well-aligned Cu 2 O nanowire arrays and their photovoltaic effect. Scripta Materialia, 66(2), 81-84.
Zengin, Y., & Pozan Soylu, G. S. (2018). Enhancement of Photocatalytic Performance with Metal Oxide V2O5 Catalyst Under Different Light Source Illumination. Environmental Engineering Science, 35(4), 323-332.
Zhang, J., Liu, J., Peng, Q., Wang, X., & Li, Y. (2006). Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chemistry of materials, 18(4), 867-871.
Zhang, P., Wang, L., Zhang, X., Shao, C., Hu, J., & Shao, G. (2015). SnO2-core carbon-shell composite nanotubes with enhanced photocurrent and photocatalytic performance. Applied Catalysis B: Environmental, 166, 193-201.
Zheng, J., Li, J., Bai, J., Tan, X., Zeng, Q., Li, L., & Zhou, B. (2017). Efficient Degradation of Refractory Organics Using Sulfate Radicals Generated Directly from WO3 Photoelectrode and the Catalytic Reaction of Sulfate. Catalysts, 7(11), 346.
Zheng, Y., Chen, C., Zhan, Y., Lin, X., Zheng, Q., Wei, K., & Zhu, J. (2008). Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst: Correlation between Structure and Property. The Journal of Physical Chemistry C, 112(29), 10773-10777.
Zhu, T., & Gao, S.-P. (2014). The stability, electronic structure, and optical property of TiO2 polymorphs. The Journal of Physical Chemistry C, 118(21), 11385-11396.
Zhu, W., Liu, X., Liu, H., Tong, D., Yang, J., & Peng, J. (2010). Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. Journal of the American Chemical Society, 132(36), 12619-12626.
Ziarati, A., Badiei, A., Luque, R., & Ouyang, W. (2018a). Designer hydrogenated wrinkled yolk@ shell TiO 2 architectures towards advanced visible light photocatalysts for selective alcohol oxidation. Journal of Materials Chemistry A, 6(19), 8962-8968.
Ziarati, A., Badiei, A., Luque, R., & Ouyang, W. (2018b). Designer hydrogenated wrinkled yolk@ shell TiO 2 architectures towards advanced visible light photocatalysts for selective alcohol oxidation. Journal of Materials Chemistry A.