| 研究生: |
賴輝寰 Lai, Hui-Huang |
|---|---|
| 論文名稱: |
缺氧誘發因子-1α藉由誘導Dicer蛋白質降解抑制微小核醣核酸生合成促進癌症轉移 HIF-1α-induced Dicer proteolysis suppresses miRNA biogenesis to promote cancer metastasis |
| 指導教授: |
陳百昇
Chen, Pai-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | Dicer 、缺氧誘發因子-1α 、細胞自噬 、癌症轉移 、微小核醣核酸-200b |
| 外文關鍵詞: | Dicer, HIF-1α, autophagy, cancer metastasis, miR-200b |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微小核醣核酸是需多重步驟的處理而產生的,並且能夠抑制目標基因轉錄的表現。微小核醣核酸的失調已被證實與人類癌症有關。Dicer是一個主要調控微小核醣核酸生合成的酵素,能夠在RNA誘導沉默複合體(RISC)中將微小核醣核酸前驅物切割成微小核醣核酸進而抑制目標基因表現。在動物實驗中被證明去除Dicer的表現能增強腫瘤新生,因此Dicer被認為具有抑制腫瘤的功能。根據這樣的概念,Dicer在不同種腫瘤組織中發現皆有表現量下降的現象並能夠藉由抑制微小核醣核酸的生合成促進癌症轉移及腫瘤新生,但是以目前的知識對於抑制微小核醣核酸的上游調控者還是尚未清楚的。缺氧誘發因子-1α (HIF-1α)是一個充分被研究的一種轉錄因子,會在缺氧環境及生長因子刺激下被活化,促進癌症發展。在本篇研究中,我們在不同種癌細胞及人類腫瘤組織中證明於微小核醣核酸生合成中的關鍵酵素Dicer是HIF-1α的一個新結合蛋白。在癌細胞中HIF-1α表現量增加會降解蛋白質Dicer表現進而抑制解微小核醣核酸生合成。腫瘤微環境誘導的HIF-1α表現會連結Dicer與E3泛素連接酶Parkin 的結合,這樣的結合會促使Dicer泛素化並被細胞自噬受器p62所辨認進入到細胞自噬-溶體系統進行蛋白質降解。Dicer的下降會降低let-7b與miR-200b的生合成達到促進ZEB1所調控的上皮-間質細胞轉換與癌症轉移。本研究為首次證明Dicer是HIF-1α新結合蛋白,並促進Dicer進入細胞自噬-溶體系統進行蛋白質降解。這些發現可以提供一個Dicer被抑制的新穎機轉是透過HIF-1α非轉譯的功能,這樣的結果也證實了HIF-1α一個非典型的致癌作用。
MicroRNA (miRNA) is generated by multiple steps processing that post-transcriptionally suppress the expression of target genes. Dysregulation of miRNAs has been implicated in human cancer malignancy. Dicer, a central enzyme conducts miRNA precursors into the RNA-induced silencing complex (RISC) to process mature miRNA for a post-transcriptional gene silencing. In mouse model, deletion of Dicer expression enhanced tumorigenesis, functioning as a haploinsufficient tumor suppressor. Supporting to this concept, downregulation of Dicer expression was observed in multiple human tumors and has been supposed to promote cancer metastasis and tumorigenesis due to repression of global miRNA maturation but the origin of this mechanism is not well understood. Hypoxia-inducible factor-1α (HIF-1α) is a well-studied transcription factor activated by tumor microenvironment for cancer development, including hypoxic condition and growth factors stimulation. Here we identify a critical miRNA processing enzyme, Dicer that is a novel HIF-1α interacting protein in multiple cancer cells and human tumor tissues. HIF-1α post-translationally degrades Dicer protein to attenuate miRNA biogenesis in cancer cells. Microenvironmental stimulation-induced HIF-1α bridges and enhances the binding of Dicer and Parkin. This interaction further ubiquitinates Dicer to be recognized by autophagic receptor p62 for autophagic-lysosomal degradation. Subsequently, downregulation of Dicer reduces maturation of let-7b and miR-200b to facilitate ZEB1-mediated EMT and cancer metastasis. The present study first identifies Dicer as a novel HIF-1α-targeting protein for autophagic-lysosomal proteolysis of Dicer. These findings provide a novel mechanism of Dicer downregulation through a HIF-1α transcription independent function that exerts an unconventional oncogenic effect of HIF-1α.
1. Croce, C.M., Oncogenes and cancer. N Engl J Med, 2008. 358(5): p. 502-11.
2. Michor, F., Y. Iwasa, and M.A. Nowak, Dynamics of cancer progression. Nat Rev Cancer, 2004. 4(3): p. 197-205.
3. Kinzler, K.W. and B. Vogelstein, Cancer-susceptibility genes. Gatekeepers and caretakers. Nature, 1997. 386(6627): p. 761, 763.
4. Bissell, M.J. and D. Radisky, Putting tumours in context. Nat Rev Cancer, 2001. 1(1): p. 46-54.
5. Herbst, R.S., Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys, 2004. 59(2 Suppl): p. 21-6.
6. Neufeld, G., T. Cohen, S. Gengrinovitch, and Z. Poltorak, Vascular endothelial growth factor (VEGF) and its receptors. FASEB J, 1999. 13(1): p. 9-22.
7. Andrae, J., R. Gallini, and C. Betsholtz, Role of platelet-derived growth factors in physiology and medicine. Genes Dev, 2008. 22(10): p. 1276-312.
8. Hoesel, B. and J.A. Schmid, The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer, 2013. 12: p. 86.
9. Dhillon, A.S., S. Hagan, O. Rath, and W. Kolch, MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-90.
10. Hennessy, B.T., D.L. Smith, P.T. Ram, Y. Lu, and G.B. Mills, Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov, 2005. 4(12): p. 988-1004.
11. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA Cancer J Clin, 2018. 68(1): p. 7-30.
12. DeSantis, C.E., J. Ma, A. Goding Sauer, L.A. Newman, and A. Jemal, Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin, 2017. 67(6): p. 439-448.
13. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72.
14. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-37.
15. Webber, C., M. Gospodarowicz, L.H. Sobin, C. Wittekind, F.L. Greene, M.D. Mason, C. Compton, J. Brierley, and P.A. Groome, Improving the TNM classification: findings from a 10-year continuous literature review. Int J Cancer, 2014. 135(2): p. 371-8.
16. Edge, S.B. and C.C. Compton, The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol, 2010. 17(6): p. 1471-4.
17. Seyfried, T.N. and L.C. Huysentruyt, On the origin of cancer metastasis. Crit Rev Oncog, 2013. 18(1-2): p. 43-73.
18. Heimann, R., F. Lan, R. McBride, and S. Hellman, Separating favorable from unfavorable prognostic markers in breast cancer: the role of E-cadherin. Cancer Res, 2000. 60(2): p. 298-304.
19. Mehlen, P. and A. Puisieux, Metastasis: a question of life or death. Nat Rev Cancer, 2006. 6(6): p. 449-58.
20. Lowe, S.W., E. Cepero, and G. Evan, Intrinsic tumour suppression. Nature, 2004. 432(7015): p. 307-15.
21. Yin, C., C.M. Knudson, S.J. Korsmeyer, and T. Van Dyke, Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature, 1997. 385(6617): p. 637-40.
22. Hay, E.D., An overview of epithelio-mesenchymal transformation. Acta Anat (Basel), 1995. 154(1): p. 8-20.
23. Thiery, J.P., H. Acloque, R.Y. Huang, and M.A. Nieto, Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
24. Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42.
25. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96.
26. van Zijl, F., G. Krupitza, and W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res, 2011. 728(1-2): p. 23-34.
27. Tsai, J.H. and J. Yang, Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev, 2013. 27(20): p. 2192-206.
28. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 2008. 14(6): p. 818-29.
29. Cano, A., M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo, and M.A. Nieto, The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000. 2(2): p. 76-83.
30. Guaita, S., I. Puig, C. Franci, M. Garrido, D. Dominguez, E. Batlle, E. Sancho, S. Dedhar, A.G. De Herreros, and J. Baulida, Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem, 2002. 277(42): p. 39209-16.
31. Savagner, P., K.M. Yamada, and J.P. Thiery, The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol, 1997. 137(6): p. 1403-19.
32. Yang, J., S.A. Mani, J.L. Donaher, S. Ramaswamy, R.A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson, and R.A. Weinberg, Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): p. 927-39.
33. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.
34. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
35. Cunningham, D., W. Atkin, H.J. Lenz, H.T. Lynch, B. Minsky, B. Nordlinger, and N. Starling, Colorectal cancer. Lancet, 2010. 375(9719): p. 1030-47.
36. Sung, J.J., J.Y. Lau, K.L. Goh, W.K. Leung, and C. Asia Pacific Working Group on Colorectal, Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol, 2005. 6(11): p. 871-6.
37. Siegel, R.L., A. Jemal, and E.M. Ward, Increase in incidence of colorectal cancer among young men and women in the United States. Cancer Epidemiol Biomarkers Prev, 2009. 18(6): p. 1695-8.
38. Center, M.M., A. Jemal, and E. Ward, International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev, 2009. 18(6): p. 1688-94.
39. Theodoratou, E., M. Timofeeva, X. Li, X. Meng, and J.P.A. Ioannidis, Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to Cancer. Annu Rev Nutr, 2017. 37: p. 293-320.
40. Stewart, B.W., C. Wild, International Agency for Research on Cancer, and World Health Organization, World cancer report 2014. 2014, Lyon, France
Geneva, Switzerland: International Agency for Research on Cancer
WHO Press. xiv, 630 pages.
41. Watson, A.J. and P.D. Collins, Colon cancer: a civilization disorder. Dig Dis, 2011. 29(2): p. 222-8.
42. Pancione, M., A. Remo, and V. Colantuoni, Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Patholog Res Int, 2012. 2012: p. 509348.
43. Burt, R.W., Colon cancer screening. Gastroenterology, 2000. 119(3): p. 837-53.
44. Vogelstein, B., E.R. Fearon, S.R. Hamilton, S.E. Kern, A.C. Preisinger, M. Leppert, Y. Nakamura, R. White, A.M. Smits, and J.L. Bos, Genetic alterations during colorectal-tumor development. N Engl J Med, 1988. 319(9): p. 525-32.
45. Arnold, M., M.S. Sierra, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017. 66(4): p. 683-691.
46. Brenner, H., M. Kloor, and C.P. Pox, Colorectal cancer. Lancet, 2014. 383(9927): p. 1490-1502.
47. van Gijn, W., C.A. Marijnen, I.D. Nagtegaal, E.M. Kranenbarg, H. Putter, T. Wiggers, H.J. Rutten, L. Pahlman, B. Glimelius, C.J. van de Velde, and G. Dutch Colorectal Cancer, Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol, 2011. 12(6): p. 575-82.
48. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA Cancer J Clin, 2016. 66(1): p. 7-30.
49. Vaupel, P. and A. Mayer, Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev, 2007. 26(2): p. 225-39.
50. Wilson, W.R. and M.P. Hay, Targeting hypoxia in cancer therapy. Nat Rev Cancer, 2011. 11(6): p. 393-410.
51. Muz, B., P. de la Puente, F. Azab, and A.K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl), 2015. 3: p. 83-92.
52. Eales, K.L., K.E. Hollinshead, and D.A. Tennant, Hypoxia and metabolic adaptation of cancer cells. Oncogenesis, 2016. 5: p. e190.
53. Semenza, G.L., HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol, 2001. 13(2): p. 167-71.
54. Ke, Q. and M. Costa, Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol, 2006. 70(5): p. 1469-80.
55. Kallio, P.J., W.J. Wilson, S. O'Brien, Y. Makino, and L. Poellinger, Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem, 1999. 274(10): p. 6519-25.
56. Forsythe, J.A., B.H. Jiang, N.V. Iyer, F. Agani, S.W. Leung, R.D. Koos, and G.L. Semenza, Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol, 1996. 16(9): p. 4604-13.
57. Lu, X. and Y. Kang, Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res, 2010. 16(24): p. 5928-35.
58. Zhong, H., A.M. De Marzo, E. Laughner, M. Lim, D.A. Hilton, D. Zagzag, P. Buechler, W.B. Isaacs, G.L. Semenza, and J.W. Simons, Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res, 1999. 59(22): p. 5830-5.
59. Krishnamachary, B., S. Berg-Dixon, B. Kelly, F. Agani, D. Feldser, G. Ferreira, N. Iyer, J. LaRusch, B. Pak, P. Taghavi, and G.L. Semenza, Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res, 2003. 63(5): p. 1138-43.
60. Velasco-Hernandez, T., A. Hyrenius-Wittsten, M. Rehn, D. Bryder, and J. Cammenga, HIF-1alpha can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood, 2014. 124(24): p. 3597-607.
61. Maranchie, J.K., J.R. Vasselli, J. Riss, J.S. Bonifacino, W.M. Linehan, and R.D. Klausner, The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell, 2002. 1(3): p. 247-55.
62. Vukovic, M., A.V. Guitart, C. Sepulveda, A. Villacreces, E. O'Duibhir, T.I. Panagopoulou, A. Ivens, J. Menendez-Gonzalez, J.M. Iglesias, L. Allen, F. Glykofrydis, C. Subramani, A. Armesilla-Diaz, A.E. Post, K. Schaak, D. Gezer, C.W. So, T.L. Holyoake, A. Wood, D. O'Carroll, P.J. Ratcliffe, and K.R. Kranc, Hif-1alpha and Hif-2alpha synergize to suppress AML development but are dispensable for disease maintenance. J Exp Med, 2015. 212(13): p. 2223-34.
63. Deynoux, M., N. Sunter, O. Herault, and F. Mazurier, Hypoxia and Hypoxia-Inducible Factors in Leukemias. Front Oncol, 2016. 6: p. 41.
64. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
65. Krol, J., I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 2010. 11(9): p. 597-610.
66. Winter, J., S. Jung, S. Keller, R.I. Gregory, and S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 2009. 11(3): p. 228-34.
67. Han, J., Y. Lee, K.H. Yeom, Y.K. Kim, H. Jin, and V.N. Kim, The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004. 18(24): p. 3016-27.
68. Lee, Y., K. Jeon, J.T. Lee, S. Kim, and V.N. Kim, MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002. 21(17): p. 4663-70.
69. Siomi, H. and M.C. Siomi, Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell, 2010. 38(3): p. 323-32.
70. Bernstein, E., A.A. Caudy, S.M. Hammond, and G.J. Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001. 409(6818): p. 363-6.
71. Zhang, H., F.A. Kolb, L. Jaskiewicz, E. Westhof, and W. Filipowicz, Single processing center models for human Dicer and bacterial RNase III. Cell, 2004. 118(1): p. 57-68.
72. Macrae, I.J., K. Zhou, F. Li, A. Repic, A.N. Brooks, W.Z. Cande, P.D. Adams, and J.A. Doudna, Structural basis for double-stranded RNA processing by Dicer. Science, 2006. 311(5758): p. 195-8.
73. Cheng, T.L., Z. Wang, Q. Liao, Y. Zhu, W.H. Zhou, W. Xu, and Z. Qiu, MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell, 2014. 28(5): p. 547-60.
74. Fukuda, T., K. Yamagata, S. Fujiyama, T. Matsumoto, I. Koshida, K. Yoshimura, M. Mihara, M. Naitou, H. Endoh, T. Nakamura, C. Akimoto, Y. Yamamoto, T. Katagiri, C. Foulds, S. Takezawa, H. Kitagawa, K. Takeyama, B.W. O'Malley, and S. Kato, DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol, 2007. 9(5): p. 604-11.
75. Davis, B.N., A.C. Hilyard, G. Lagna, and A. Hata, SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 2008. 454(7200): p. 56-61.
76. Davis, B.N., A.C. Hilyard, P.H. Nguyen, G. Lagna, and A. Hata, Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell, 2010. 39(3): p. 373-84.
77. Mazumder, A., M. Bose, A. Chakraborty, S. Chakrabarti, and S.N. Bhattacharyya, A transient reversal of miRNA-mediated repression controls macrophage activation. EMBO Rep, 2013. 14(11): p. 1008-16.
78. Leung, A.K., S. Vyas, J.E. Rood, A. Bhutkar, P.A. Sharp, and P. Chang, Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell, 2011. 42(4): p. 489-99.
79. Schwarz, D.S., G. Hutvagner, T. Du, Z. Xu, N. Aronin, and P.D. Zamore, Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003. 115(2): p. 199-208.
80. Kanellopoulou, C., S.A. Muljo, A.L. Kung, S. Ganesan, R. Drapkin, T. Jenuwein, D.M. Livingston, and K. Rajewsky, Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005. 19(4): p. 489-501.
81. Bernstein, E., S.Y. Kim, M.A. Carmell, E.P. Murchison, H. Alcorn, M.Z. Li, A.A. Mills, S.J. Elledge, K.V. Anderson, and G.J. Hannon, Dicer is essential for mouse development. Nat Genet, 2003. 35(3): p. 215-7.
82. Cheng, W., Y. Qi, L. Tian, B. Wang, W. Huang, and Y. Chen, Dicer promotes tumorigenesis by translocating to nucleus to promote SFRP1 promoter methylation in cholangiocarcinoma cells. Cell Death Dis, 2017. 8(2): p. e2628.
83. Yu, Z., L. Wang, C. Wang, X. Ju, M. Wang, K. Chen, E. Loro, Z. Li, Y. Zhang, K. Wu, M.C. Casimiro, M. Gormley, A. Ertel, P. Fortina, Y. Chen, A. Tozeren, Z. Liu, and R.G. Pestell, Cyclin D1 induction of Dicer governs microRNA processing and expression in breast cancer. Nat Commun, 2013. 4: p. 2812.
84. Kumar, M.S., J. Lu, K.L. Mercer, T.R. Golub, and T. Jacks, Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet, 2007. 39(5): p. 673-7.
85. He, L., H.Y. Wang, L. Zhang, L. Huang, J.D. Li, Y. Xiong, M.Y. Zhang, W.H. Jia, J.P. Yun, R.Z. Luo, and M. Zheng, Prognostic significance of low DICER expression regulated by miR-130a in cervical cancer. Cell Death Dis, 2014. 5: p. e1205.
86. Khoshnaw, S.M., E.A. Rakha, T.M. Abdel-Fatah, C.C. Nolan, Z. Hodi, D.R. Macmillan, I.O. Ellis, and A.R. Green, Loss of Dicer expression is associated with breast cancer progression and recurrence. Breast Cancer Res Treat, 2012. 135(2): p. 403-13.
87. Faggad, A., A. Kasajima, W. Weichert, A. Stenzinger, N.E. Elwali, M. Dietel, and C. Denkert, Down-regulation of the microRNA processing enzyme Dicer is a prognostic factor in human colorectal cancer. Histopathology, 2012. 61(4): p. 552-561.
88. Spaderna, S., O. Schmalhofer, M. Wahlbuhl, A. Dimmler, K. Bauer, A. Sultan, F. Hlubek, A. Jung, D. Strand, A. Eger, T. Kirchner, J. Behrens, and T. Brabletz, The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res, 2008. 68(2): p. 537-44.
89. Sanchez-Tillo, E., O. de Barrios, L. Siles, P.G. Amendola, D.S. Darling, M. Cuatrecasas, A. Castells, and A. Postigo, ZEB1 Promotes invasiveness of colorectal carcinoma cells through the opposing regulation of uPA and PAI-1. Clin Cancer Res, 2013. 19(5): p. 1071-82.
90. Martello, G., A. Rosato, F. Ferrari, A. Manfrin, M. Cordenonsi, S. Dupont, E. Enzo, V. Guzzardo, M. Rondina, T. Spruce, A.R. Parenti, M.G. Daidone, S. Bicciato, and S. Piccolo, A MicroRNA targeting dicer for metastasis control. Cell, 2010. 141(7): p. 1195-207.
91. Burk, U., J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan, S. Spaderna, and T. Brabletz, A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 2008. 9(6): p. 582-9.
92. Kawahara, Y. and A. Mieda-Sato, TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A, 2012. 109(9): p. 3347-52.
93. Muller, P.A., A.G. Trinidad, P.T. Caswell, J.C. Norman, and K.H. Vousden, Mutant p53 regulates Dicer through p63-dependent and -independent mechanisms to promote an invasive phenotype. J Biol Chem, 2014. 289(1): p. 122-32.
94. Trabucchi, M., P. Briata, M. Garcia-Mayoral, A.D. Haase, W. Filipowicz, A. Ramos, R. Gherzi, and M.G. Rosenfeld, The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 2009. 459(7249): p. 1010-4.
95. Glickman, M.H. and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002. 82(2): p. 373-428.
96. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.
97. Tang, Y., Y. Geng, J. Luo, W. Shen, W. Zhu, C. Meng, M. Li, X. Zhou, S. Zhang, and J. Cao, Downregulation of ubiquitin inhibits the proliferation and radioresistance of non-small cell lung cancer cells in vitro and in vivo. Sci Rep, 2015. 5: p. 9476.
98. Wang, S.A., Y.C. Wang, Y.P. Chuang, Y.H. Huang, W.C. Su, W.C. Chang, and J.J. Hung, EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene, 2017. 36(21): p. 2930-2945.
99. Finch, J.S., T. St John, P. Krieg, K. Bonham, H.T. Smith, V.A. Fried, and G.T. Bowden, Overexpression of three ubiquitin genes in mouse epidermal tumors is associated with enhanced cellular proliferation and stress. Cell Growth Differ, 1992. 3(5): p. 269-78.
100. Tian, Y., W. Ding, Y. Wang, T. Ji, S. Sun, Q. Mo, P. Chen, Y. Fang, J. Liu, B. Wang, J. Zhou, D. Ma, and P. Wu, Ubiquitin B in cervical cancer: critical for the maintenance of cancer stem-like cell characters. PLoS One, 2013. 8(12): p. e84457.
101. Husnjak, K. and I. Dikic, Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem, 2012. 81: p. 291-322.
102. Jin, J., X. Li, S.P. Gygi, and J.W. Harper, Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature, 2007. 447(7148): p. 1135-8.
103. Kulathu, Y. and D. Komander, Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol, 2012. 13(8): p. 508-23.
104. Yang, Y., J. Kitagaki, R.M. Dai, Y.C. Tsai, K.L. Lorick, R.L. Ludwig, S.A. Pierre, J.P. Jensen, I.V. Davydov, P. Oberoi, C.C. Li, J.H. Kenten, J.A. Beutler, K.H. Vousden, and A.M. Weissman, Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res, 2007. 67(19): p. 9472-81.
105. Kapuria, V., L.F. Peterson, H.D. Showalter, P.D. Kirchhoff, M. Talpaz, and N.J. Donato, Protein cross-linking as a novel mechanism of action of a ubiquitin-activating enzyme inhibitor with anti-tumor activity. Biochem Pharmacol, 2011. 82(4): p. 341-9.
106. Cai, Q., H. Sun, Y. Peng, J. Lu, Z. Nikolovska-Coleska, D. McEachern, L. Liu, S. Qiu, C.Y. Yang, R. Miller, H. Yi, T. Zhang, D. Sun, S. Kang, M. Guo, L. Leopold, D. Yang, and S. Wang, A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem, 2011. 54(8): p. 2714-26.
107. Chan, C.H., J.K. Morrow, C.F. Li, Y. Gao, G. Jin, A. Moten, L.J. Stagg, J.E. Ladbury, Z. Cai, D. Xu, C.J. Logothetis, M.C. Hung, S. Zhang, and H.K. Lin, Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell, 2013. 154(3): p. 556-68.
108. Vassilev, L.T., B.T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, and E.A. Liu, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 2004. 303(5659): p. 844-8.
109. Kandoth, C., M.D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J.F. McMichael, M.A. Wyczalkowski, M.D.M. Leiserson, C.A. Miller, J.S. Welch, M.J. Walter, M.C. Wendl, T.J. Ley, R.K. Wilson, B.J. Raphael, and L. Ding, Mutational landscape and significance across 12 major cancer types. Nature, 2013. 502(7471): p. 333-339.
110. Andreeff, M., K.R. Kelly, K. Yee, S. Assouline, R. Strair, L. Popplewell, D. Bowen, G. Martinelli, M.W. Drummond, P. Vyas, M. Kirschbaum, S.P. Iyer, V. Ruvolo, G.M. Gonzalez, X. Huang, G. Chen, B. Graves, S. Blotner, P. Bridge, L. Jukofsky, S. Middleton, M. Reckner, R. Rueger, J. Zhi, G. Nichols, and K. Kojima, Results of the Phase I Trial of RG7112, a Small-Molecule MDM2 Antagonist in Leukemia. Clin Cancer Res, 2016. 22(4): p. 868-76.
111. Aziz, M.H., H. Shen, and C.G. Maki, Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3. Oncogene, 2011. 30(46): p. 4678-86.
112. Ray-Coquard, I., J.Y. Blay, A. Italiano, A. Le Cesne, N. Penel, J. Zhi, F. Heil, R. Rueger, B. Graves, M. Ding, D. Geho, S.A. Middleton, L.T. Vassilev, G.L. Nichols, and B.N. Bui, Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol, 2012. 13(11): p. 1133-40.
113. Okamoto, Y., T. Ozaki, K. Miyazaki, M. Aoyama, M. Miyazaki, and A. Nakagawara, UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res, 2003. 63(14): p. 4167-73.
114. Wu, X., W. Zhang, J. Font-Burgada, T. Palmer, A.S. Hamil, S.K. Biswas, M. Poidinger, N. Borcherding, Q. Xie, L.G. Ellies, N.K. Lytle, L.W. Wu, R.G. Fox, J. Yang, S.F. Dowdy, T. Reya, and M. Karin, Ubiquitin-conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1-p38 MAP kinase cascade. Proc Natl Acad Sci U S A, 2014. 111(38): p. 13870-5.
115. Levine, B. and D.J. Klionsky, Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 2004. 6(4): p. 463-77.
116. Stolz, A., A. Ernst, and I. Dikic, Cargo recognition and trafficking in selective autophagy. Nat Cell Biol, 2014. 16(6): p. 495-501.
117. Glick, D., S. Barth, and K.F. Macleod, Autophagy: cellular and molecular mechanisms. J Pathol, 2010. 221(1): p. 3-12.
118. Pankiv, S., T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen, p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 2007. 282(33): p. 24131-45.
119. Kirkin, V., T. Lamark, Y.S. Sou, G. Bjorkoy, J.L. Nunn, J.A. Bruun, E. Shvets, D.G. McEwan, T.H. Clausen, P. Wild, I. Bilusic, J.P. Theurillat, A. Overvatn, T. Ishii, Z. Elazar, M. Komatsu, I. Dikic, and T. Johansen, A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 2009. 33(4): p. 505-16.
120. Thurston, T.L., G. Ryzhakov, S. Bloor, N. von Muhlinen, and F. Randow, The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol, 2009. 10(11): p. 1215-21.
121. Johansen, T. and T. Lamark, Selective autophagy mediated by autophagic adapter proteins. Autophagy, 2011. 7(3): p. 279-96.
122. Kraft, C., M. Peter, and K. Hofmann, Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol, 2010. 12(9): p. 836-41.
123. Cuervo, A.M. and E. Wong, Chaperone-mediated autophagy: roles in disease and aging. Cell Res, 2014. 24(1): p. 92-104.
124. Mizushima, N. and M. Komatsu, Autophagy: renovation of cells and tissues. Cell, 2011. 147(4): p. 728-41.
125. Li, W.W., J. Li, and J.K. Bao, Microautophagy: lesser-known self-eating. Cell Mol Life Sci, 2012. 69(7): p. 1125-36.
126. Bellot, G., R. Garcia-Medina, P. Gounon, J. Chiche, D. Roux, J. Pouyssegur, and N.M. Mazure, Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol, 2009. 29(10): p. 2570-81.
127. Degenhardt, K., R. Mathew, B. Beaudoin, K. Bray, D. Anderson, G. Chen, C. Mukherjee, Y. Shi, C. Gelinas, Y. Fan, D.A. Nelson, S. Jin, and E. White, Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006. 10(1): p. 51-64.
128. Kaminskyy, V.O., T. Piskunova, I.B. Zborovskaya, E.M. Tchevkina, and B. Zhivotovsky, Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy, 2012. 8(7): p. 1032-44.
129. Li, L., Y. Chen, and S.B. Gibson, Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal, 2013. 25(1): p. 50-65.
130. Mizushima, N., A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi, In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell, 2004. 15(3): p. 1101-11.
131. Ogata, M., S. Hino, A. Saito, K. Morikawa, S. Kondo, S. Kanemoto, T. Murakami, M. Taniguchi, I. Tanii, K. Yoshinaga, S. Shiosaka, J.A. Hammarback, F. Urano, and K. Imaizumi, Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol, 2006. 26(24): p. 9220-31.
132. Xu, Y., X. Xia, and H. Pan, Active autophagy in the tumor microenvironment: A novel mechanism for cancer metastasis. Oncol Lett, 2013. 5(2): p. 411-416.
133. Suzuki, H.I., M. Arase, H. Matsuyama, Y.L. Choi, T. Ueno, H. Mano, K. Sugimoto, and K. Miyazono, MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell, 2011. 44(3): p. 424-36.
134. Shyu, Y.J., H. Liu, X. Deng, and C.D. Hu, Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques, 2006. 40(1): p. 61-6.
135. Trempe, J.F., V. Sauve, K. Grenier, M. Seirafi, M.Y. Tang, M. Menade, S. Al-Abdul-Wahid, J. Krett, K. Wong, G. Kozlov, B. Nagar, E.A. Fon, and K. Gehring, Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science, 2013. 340(6139): p. 1451-5.
136. Lee, Y., I. Hur, S.Y. Park, Y.K. Kim, M.R. Suh, and V.N. Kim, The role of PACT in the RNA silencing pathway. EMBO J, 2006. 25(3): p. 522-32.
137. Gregory, P.A., A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas, Y. Khew-Goodall, and G.J. Goodall, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 2008. 10(5): p. 593-601.
138. Lewis, B.P., I.H. Shih, M.W. Jones-Rhoades, D.P. Bartel, and C.B. Burge, Prediction of mammalian microRNA targets. Cell, 2003. 115(7): p. 787-98.
139. Lal, A., F. Navarro, C.A. Maher, L.E. Maliszewski, N. Yan, E. O'Day, D. Chowdhury, D.M. Dykxhoorn, P. Tsai, O. Hofmann, K.G. Becker, M. Gorospe, W. Hide, and J. Lieberman, miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol Cell, 2009. 35(5): p. 610-25.
140. Shyu, Y.J., S.M. Hiatt, H.M. Duren, R.E. Ellis, T.K. Kerppola, and C.D. Hu, Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc, 2008. 3(4): p. 588-96.
141. Seglen, P.O. and M.F. Brinchmann, Purification of autophagosomes from rat hepatocytes. Autophagy, 2010. 6(4): p. 542-7.
142. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.
143. Gagnon, K.T., L. Li, Y. Chu, B.A. Janowski, and D.R. Corey, RNAi factors are present and active in human cell nuclei. Cell Rep, 2014. 6(1): p. 211-21.
144. van den Beucken, T., E. Koch, K. Chu, R. Rupaimoole, P. Prickaerts, M. Adriaens, J.W. Voncken, A.L. Harris, F.M. Buffa, S. Haider, M.H. Starmans, C.Q. Yao, M. Ivan, C. Ivan, C.V. Pecot, P.C. Boutros, A.K. Sood, M. Koritzinsky, and B.G. Wouters, Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun, 2014. 5: p. 5203.
145. Bandara, V., M.Z. Michael, and J.M. Gleadle, Hypoxia represses microRNA biogenesis proteins in breast cancer cells. BMC Cancer, 2014. 14: p. 533.
146. Ho, J.J., J.L. Metcalf, M.S. Yan, P.J. Turgeon, J.J. Wang, M. Chalsev, T.N. Petruzziello-Pellegrini, A.K. Tsui, J.Z. He, H. Dhamko, H.S. Man, G.B. Robb, B.T. Teh, M. Ohh, and P.A. Marsden, Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem, 2012. 287(34): p. 29003-20.
147. Shaid, S., C.H. Brandts, H. Serve, and I. Dikic, Ubiquitination and selective autophagy. Cell Death Differ, 2013. 20(1): p. 21-30.
148. Maxwell, P.H., M.S. Wiesener, G.W. Chang, S.C. Clifford, E.C. Vaux, M.E. Cockman, C.C. Wykoff, C.W. Pugh, E.R. Maher, and P.J. Ratcliffe, The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999. 399(6733): p. 271-5.
149. Chen, D., M. Li, J. Luo, and W. Gu, Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem, 2003. 278(16): p. 13595-8.
150. Laughner, E., P. Taghavi, K. Chiles, P.C. Mahon, and G.L. Semenza, HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol, 2001. 21(12): p. 3995-4004.
151. Geisler, S., K.M. Holmstrom, D. Skujat, F.C. Fiesel, O.C. Rothfuss, P.J. Kahle, and W. Springer, PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 2010. 12(2): p. 119-31.
152. Epstein, A.C., J.M. Gleadle, L.A. McNeill, K.S. Hewitson, J. O'Rourke, D.R. Mole, M. Mukherji, E. Metzen, M.I. Wilson, A. Dhanda, Y.M. Tian, N. Masson, D.L. Hamilton, P. Jaakkola, R. Barstead, J. Hodgkin, P.H. Maxwell, C.W. Pugh, C.J. Schofield, and P.J. Ratcliffe, C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001. 107(1): p. 43-54.
153. Hogenesch, J.B., W.K. Chan, V.H. Jackiw, R.C. Brown, Y.Z. Gu, M. Pray-Grant, G.H. Perdew, and C.A. Bradfield, Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem, 1997. 272(13): p. 8581-93.
154. Hirsila, M., P. Koivunen, V. Gunzler, K.I. Kivirikko, and J. Myllyharju, Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem, 2003. 278(33): p. 30772-80.
155. Pongratz, I., C. Antonsson, M.L. Whitelaw, and L. Poellinger, Role of the PAS domain in regulation of dimerization and DNA binding specificity of the dioxin receptor. Mol Cell Biol, 1998. 18(7): p. 4079-88.
156. Hutvagner, G., J. McLachlan, A.E. Pasquinelli, E. Balint, T. Tuschl, and P.D. Zamore, A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001. 293(5531): p. 834-8.
157. Cifuentes, D., H. Xue, D.W. Taylor, H. Patnode, Y. Mishima, S. Cheloufi, E. Ma, S. Mane, G.J. Hannon, N.D. Lawson, S.A. Wolfe, and A.J. Giraldez, A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science, 2010. 328(5986): p. 1694-8.
158. Kulshreshtha, R., M. Ferracin, S.E. Wojcik, R. Garzon, H. Alder, F.J. Agosto-Perez, R. Davuluri, C.G. Liu, C.M. Croce, M. Negrini, G.A. Calin, and M. Ivan, A microRNA signature of hypoxia. Mol Cell Biol, 2007. 27(5): p. 1859-67.
159. Huang, X., Q.T. Le, and A.J. Giaccia, MiR-210--micromanager of the hypoxia pathway. Trends Mol Med, 2010. 16(5): p. 230-7.
160. Yu, F., H. Yao, P. Zhu, X. Zhang, Q. Pan, C. Gong, Y. Huang, X. Hu, F. Su, J. Lieberman, and E. Song, let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007. 131(6): p. 1109-23.
161. Krebs, A.M., J. Mitschke, M. Lasierra Losada, O. Schmalhofer, M. Boerries, H. Busch, M. Boettcher, D. Mougiakakos, W. Reichardt, P. Bronsert, V.G. Brunton, C. Pilarsky, T.H. Winkler, S. Brabletz, M.P. Stemmler, and T. Brabletz, The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol, 2017. 19(5): p. 518-529.
162. Francia, G., W. Cruz-Munoz, S. Man, P. Xu, and R.S. Kerbel, Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer, 2011. 11(2): p. 135-41.
163. Lim, C., F. Cauchy, D. Azoulay, O. Farges, M. Ronot, and M. Pocard, Tumour progression and liver regeneration--insights from animal models. Nat Rev Gastroenterol Hepatol, 2013. 10(8): p. 452-62.
164. Urosevic, J., X. Garcia-Albeniz, E. Planet, S. Real, M.V. Cespedes, M. Guiu, E. Fernandez, A. Bellmunt, S. Gawrzak, M. Pavlovic, R. Mangues, I. Dolado, F.M. Barriga, C. Nadal, N. Kemeny, E. Batlle, A.R. Nebreda, and R.R. Gomis, Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nat Cell Biol, 2014. 16(7): p. 685-94.
165. Lee, W.Y., H.K. Hong, S.K. Ham, C.I. Kim, and Y.B. Cho, Comparison of colorectal cancer in differentially established liver metastasis models. Anticancer Res, 2014. 34(7): p. 3321-8.
166. Li, Y., H.A. Rogoff, S. Keates, Y. Gao, S. Murikipudi, K. Mikule, D. Leggett, W. Li, A.B. Pardee, and C.J. Li, Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci U S A, 2015. 112(6): p. 1839-44.
167. He, L., X. He, L.P. Lim, E. de Stanchina, Z. Xuan, Y. Liang, W. Xue, L. Zender, J. Magnus, D. Ridzon, A.L. Jackson, P.S. Linsley, C. Chen, S.W. Lowe, M.A. Cleary, and G.J. Hannon, A microRNA component of the p53 tumour suppressor network. Nature, 2007. 447(7148): p. 1130-4.
168. Ma, L., J. Young, H. Prabhala, E. Pan, P. Mestdagh, D. Muth, J. Teruya-Feldstein, F. Reinhardt, T.T. Onder, S. Valastyan, F. Westermann, F. Speleman, J. Vandesompele, and R.A. Weinberg, miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol, 2010. 12(3): p. 247-56.
169. O'Donnell, K.A., E.A. Wentzel, K.I. Zeller, C.V. Dang, and J.T. Mendell, c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005. 435(7043): p. 839-43.
170. Michlewski, G., S. Guil, C.A. Semple, and J.F. Caceres, Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell, 2008. 32(3): p. 383-93.
171. Mukhopadhyay, D. and H. Riezman, Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science, 2007. 315(5809): p. 201-5.
172. Zhang, Z., P. Convertini, M. Shen, X. Xu, F. Lemoine, P. de la Grange, D.A. Andres, and S. Stamm, Valproic acid causes proteasomal degradation of DICER and influences miRNA expression. PLoS One, 2013. 8(12): p. e82895.
173. Gibbings, D., S. Mostowy, F. Jay, Y. Schwab, P. Cossart, and O. Voinnet, Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol, 2012. 14(12): p. 1314-21.
174. Kitada, T., S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura, S. Minoshima, M. Yokochi, Y. Mizuno, and N. Shimizu, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998. 392(6676): p. 605-8.
175. Devine, M.J., H. Plun-Favreau, and N.W. Wood, Parkinson's disease and cancer: two wars, one front. Nat Rev Cancer, 2011. 11(11): p. 812-23.
176. Veeriah, S., B.S. Taylor, S. Meng, F. Fang, E. Yilmaz, I. Vivanco, M. Janakiraman, N. Schultz, A.J. Hanrahan, W. Pao, M. Ladanyi, C. Sander, A. Heguy, E.C. Holland, P.B. Paty, P.S. Mischel, L. Liau, T.F. Cloughesy, I.K. Mellinghoff, D.B. Solit, and T.A. Chan, Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet, 2010. 42(1): p. 77-82.
177. Cesari, R., E.S. Martin, G.A. Calin, F. Pentimalli, R. Bichi, H. McAdams, F. Trapasso, A. Drusco, M. Shimizu, V. Masciullo, G. D'Andrilli, G. Scambia, M.C. Picchio, H. Alder, A.K. Godwin, and C.M. Croce, Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5956-61.
178. Fallon, L., C.M. Belanger, A.T. Corera, M. Kontogiannea, E. Regan-Klapisz, F. Moreau, J. Voortman, M. Haber, G. Rouleau, T. Thorarinsdottir, A. Brice, P.M. van Bergen En Henegouwen, and E.A. Fon, A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol, 2006. 8(8): p. 834-42.
179. Henn, I.H., L. Bouman, J.S. Schlehe, A. Schlierf, J.E. Schramm, E. Wegener, K. Nakaso, C. Culmsee, B. Berninger, D. Krappmann, J. Tatzelt, and K.F. Winklhofer, Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci, 2007. 27(8): p. 1868-78.
180. Ravi, A., A.M. Gurtan, M.S. Kumar, A. Bhutkar, C. Chin, V. Lu, J.A. Lees, T. Jacks, and P.A. Sharp, Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell, 2012. 21(6): p. 848-55.
181. Davalos, V. and M. Esteller, Rolling the dice to discover the role of DICER in tumorigenesis. Cancer Cell, 2012. 21(6): p. 717-9.
182. Maki-Jouppila, J.H., S. Pruikkonen, M.B. Tambe, M.R. Aure, T. Halonen, A.L. Salmela, L. Laine, A.L. Borresen-Dale, and M.J. Kallio, MicroRNA let-7b regulates genomic balance by targeting Aurora B kinase. Mol Oncol, 2015. 9(6): p. 1056-70.
183. Sarraf, S.A., M. Raman, V. Guarani-Pereira, M.E. Sowa, E.L. Huttlin, S.P. Gygi, and J.W. Harper, Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature, 2013. 496(7445): p. 372-6.
184. Maugeri, G., A.G. D'Amico, R. Reitano, S. Saccone, C. Federico, S. Cavallaro, and V. D'Agata, Parkin modulates expression of HIF-1alpha and HIF-3alpha during hypoxia in gliobastoma-derived cell lines in vitro. Cell Tissue Res, 2016. 364(3): p. 465-74.
185. Liu, J., C. Zhang, Y. Zhao, X. Yue, H. Wu, S. Huang, J. Chen, K. Tomsky, H. Xie, C.A. Khella, M.L. Gatza, D. Xia, J. Gao, E. White, B.G. Haffty, W. Hu, and Z. Feng, Parkin targets HIF-1alpha for ubiquitination and degradation to inhibit breast tumor progression. Nat Commun, 2017. 8(1): p. 1823.
186. Greijer, A.E. and E. van der Wall, The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol, 2004. 57(10): p. 1009-14.
187. Jeong, J.W., M.K. Bae, M.Y. Ahn, S.H. Kim, T.K. Sohn, M.H. Bae, M.A. Yoo, E.J. Song, K.J. Lee, and K.W. Kim, Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell, 2002. 111(5): p. 709-20.
188. Semenza, G., Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol, 2002. 64(5-6): p. 993-8.
189. Sang, N., D.P. Stiehl, J. Bohensky, I. Leshchinsky, V. Srinivas, and J. Caro, MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem, 2003. 278(16): p. 14013-9.
190. Tanimoto, K., Y. Makino, T. Pereira, and L. Poellinger, Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J, 2000. 19(16): p. 4298-309.
191. Rupaimoole, R., S.Y. Wu, S. Pradeep, C. Ivan, C.V. Pecot, K.M. Gharpure, A.S. Nagaraja, G.N. Armaiz-Pena, M. McGuire, B. Zand, H.J. Dalton, J. Filant, J.B. Miller, C. Lu, N.C. Sadaoui, L.S. Mangala, M. Taylor, T. van den Beucken, E. Koch, C. Rodriguez-Aguayo, L. Huang, M. Bar-Eli, B.G. Wouters, M. Radovich, M. Ivan, G.A. Calin, W. Zhang, G. Lopez-Berestein, and A.K. Sood, Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nat Commun, 2014. 5: p. 5202.
192. van den Beucken, T., E. Koch, K. Chu, R. Rupaimoole, P. Prickaerts, M. Adriaens, J.W. Voncken, A.L. Harris, F.M. Buffa, S. Haider, M.H.W. Starmans, C.Q. Yao, M. Ivan, C. Ivan, C.V. Pecot, P.C. Boutros, A.K. Sood, M. Koritzinsky, and B.G. Wouters, Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun, 2014. 5: p. 5203.
193. Lai, H.H., J.N. Li, M.Y. Wang, H.Y. Huang, C.M. Croce, H.L. Sun, Y.J. Lyu, J.W. Kang, C.F. Chiu, M.C. Hung, H.I. Suzuki, and P.S. Chen, HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis. J Clin Invest, 2018. 128(2): p. 625-643.
194. Kota, J., R.R. Chivukula, K.A. O'Donnell, E.A. Wentzel, C.L. Montgomery, H.W. Hwang, T.C. Chang, P. Vivekanandan, M. Torbenson, K.R. Clark, J.R. Mendell, and J.T. Mendell, Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009. 137(6): p. 1005-17.
195. Kim, D.H. and J.J. Rossi, Strategies for silencing human disease using RNA interference. Nat Rev Genet, 2007. 8(3): p. 173-84.
196. Grimm, D., K. Pandey, and M.A. Kay, Adeno-associated virus vectors for short hairpin RNA expression. Methods Enzymol, 2005. 392: p. 381-405.
197. Merritt, W.M., Y.G. Lin, W.A. Spannuth, M.S. Fletcher, A.A. Kamat, L.Y. Han, C.N. Landen, N. Jennings, K. De Geest, R.R. Langley, G. Villares, A. Sanguino, S.K. Lutgendorf, G. Lopez-Berestein, M.M. Bar-Eli, and A.K. Sood, Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst, 2008. 100(5): p. 359-72.
198. Gray, M.J., G. Van Buren, N.A. Dallas, L. Xia, X. Wang, A.D. Yang, R.J. Somcio, Y.G. Lin, S. Lim, F. Fan, L.S. Mangala, T. Arumugam, C.D. Logsdon, G. Lopez-Berestein, A.K. Sood, and L.M. Ellis, Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst, 2008. 100(2): p. 109-20.
199. Landen, C.N., W.M. Merritt, L.S. Mangala, A.M. Sanguino, C. Bucana, C. Lu, Y.G. Lin, L.Y. Han, A.A. Kamat, R. Schmandt, R.L. Coleman, D.M. Gershenson, G. Lopez-Berestein, and A.K. Sood, Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biol Ther, 2006. 5(12): p. 1708-13.
200. Hoffend, N.C., W.J. Magner, and T.B. Tomasi, The epigenetic regulation of Dicer and microRNA biogenesis by Panobinostat. Epigenetics, 2017. 12(2): p. 105-112.
201. Giaccia, A., B.G. Siim, and R.S. Johnson, HIF-1 as a target for drug development. Nat Rev Drug Discov, 2003. 2(10): p. 803-11.
202. Welsh, S.J., R.R. Williams, A. Birmingham, D.J. Newman, D.L. Kirkpatrick, and G. Powis, The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther, 2003. 2(3): p. 235-43.
203. Rapisarda, A., B. Uranchimeg, D.A. Scudiero, M. Selby, E.A. Sausville, R.H. Shoemaker, and G. Melillo, Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res, 2002. 62(15): p. 4316-24.
204. Bunnell, C.A., J.G. Supko, J.P. Eder, Jr., J.W. Clark, T.J. Lynch, D.W. Kufe, and L.N. Shulman, Phase I clinical trial of 7-cyanoquinocarcinol (DX-52-1) in adult patients with refractory solid malignancies. Cancer Chemother Pharmacol, 2001. 48(5): p. 347-55.
205. Isaacs, J.S., Y.J. Jung, E.G. Mimnaugh, A. Martinez, F. Cuttitta, and L.M. Neckers, Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem, 2002. 277(33): p. 29936-44.
206. Mabjeesh, N.J., D.E. Post, M.T. Willard, B. Kaur, E.G. Van Meir, J.W. Simons, and H. Zhong, Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res, 2002. 62(9): p. 2478-82.
207. Blancher, C., J.W. Moore, N. Robertson, and A.L. Harris, Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3'-kinase/Akt signaling pathway. Cancer Res, 2001. 61(19): p. 7349-55.
208. Mazure, N.M., E.Y. Chen, P. Yeh, K.R. Laderoute, and A.J. Giaccia, Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res, 1996. 56(15): p. 3436-40.
209. Neckers, L., Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med, 2002. 8(4 Suppl): p. S55-61.
210. Kurebayashi, J., T. Otsuki, M. Kurosumi, S. Soga, S. Akinaga, and H. Sonoo, A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. Jpn J Cancer Res, 2001. 92(12): p. 1342-51.