簡易檢索 / 詳目顯示

研究生: 黃子靜
Huang, Zi-Jing
論文名稱: 考慮再生現象以及兩因子設計且在變動溫度下鋰離子電池剩餘壽命的預測方法
A lithium-ion battery RUL prediction method considering the regeneration with two factor design under variant temperature
指導教授: 鄭順林
Jeng, Shuen-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 85
中文關鍵詞: 鋰離子電池剩餘可使用壽命電容再生現象分段隨機係數模型溫度
外文關鍵詞: Lithium-Ion Batteries, Remaining Useful Life, Capacity Regeneration Phenomena, Piecewise Random Coefficient Model, Temperature
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 準確地預測電池的剩餘使用壽命對於電池以及有使用電池的設備的預後與健康管理是非常重要。電池壽命資料通常需經過一段長時間後才能取得,因此我們將電容量作為短期內的健康指標來替代壽命資料。有很多環境因素可能會影響電容量退化路徑,尤其是環境溫度。另一個與電容量有關的重要因素稱為電容再生現象,即為電池在經過一段時間休息後,電容量將會增加。我們的研究探討了電池條件例如連續充電 / 放電循環次數、休息天數以及溫度,與電容退化的關係。這個實驗新穎之處為在不同的室溫下收集資料。這個設定反映了電池使用的實際情況。我們提出了分段隨機係數模型來捕捉給定連續充放電循環次數和休息天數下電容退化的趨勢。概似函數中有多個積分會導致計算困難,但是我們使用蒙地卡羅方法來很好地近似積分。結果顯示比不考慮再生效應和其他條件的模型能更有效地提高預測剩餘壽命的準確度。我們還提供了點估計、區間估計和剩餘壽命的分佈。藉由這些估計,建議用戶根據各種電池條件來決定適當的更換時間。

    Accurate prediction of the remaining useful life (RUL) of a battery is important to the prognosis and health management of the battery and the equipment using the battery. Since battery lifetime data are usually obtained after a long period of time, we regard battery capacity as the health indicator in the short term to replace the lifetime data. There are many environmental factors that can affect the degradation path of battery capacity, especially the surrounding temperature. Another important factor related to the capacity is called the capacity regeneration phenomena, i.e., the battery capacity will increase after a period of rest time. Our research explores the relationship of the battery conditions, such as continuous charge / discharge cycle number, rest day, and temperature, with the capacity degradation. The practical part of the experiment is that the data was collected under variant room temperature. This setting reflects the reality of battery usage on the field. We propose the piecewise random coefficient models to capture the trend of capacity degradation under the given continuous charge / discharge cycle number and rest day. There are multiple integrations in the likelihood function that cause computational difficulties, however we use the Monte Carlo method to approximate it well. Our models improve the prediction accuracy of the RUL more effectively than those don't consider the regeneration effect. We provide the point estimation, interval estimation, and the distribution of the RUL. With these estimations, users are advised to determine the appropriate replacement time for various battery conditions.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vi List of Figures viii Chapter 1. Introduction 1 1.1 Research Motivation 1 1.2 Research Purpose 2 1.3 Research Datasets 2 1.3.1. Datasets for Capacity 3 1.3.2. Datasets for Temperature 6 1.4 Research Framework 8 Chapter 2. Literature Review 9 2.1 Degradation Models 9 2.2 Models for Remaining Useful Life Prediction 10 2.3 Models with Capacity Regeneration for Remaining Useful Life Prediction 11 2.4 Capacity Models for Temperature 12 Chapter 3. Methodology 14 3.1 Introduction of Chiu (2020) Models 14 3.1.1. Model-4-PLFD-PLFR 14 3.1.2. Model-5-PLRD-PLFR 15 3.2 Introduction of Chen (2021) Models 15 3.2.1. Model-4-PLFD-PLFR-2F 16 3.2.2. Model-5-PLRD-PLFR-2F 16 3.3 Cumulative Discharge Temperature Statistic 17 3.4 Models with Two Factors 18 3.4.1. MFC/MFR: PLFD-1F-PLFR-1F 19 3.4.2. MFCR: PLFD-2F-PLFR-2F 20 3.4.3. MFCRI: PLFD-2F-I-PLFR-2F-I 21 3.4.4. MRCR: PLRD-2F-PLRR-2F 22 3.5 Likelihood Functions 23 3.5.1. Likelihood Function of PLRD-2F-PLRR-2F 23 3.6 Two-Stage Parameter Estimation Method 26 3.7 Lifetime Distribution Conditioned on Observed Time Points 27 3.7.1. Bootstrap Simulation Method of Lifetime Distribution Conditioned on Observed Time Points 28 3.7.2. Formula Derivation Method of Lifetime Distribution Conditioned on Observed Time Points 29 Chapter 4. Case Application of NCKU + NTHU Lithium-ion Battery Dataset 37 4.1 Analysis of Cumulative Discharge Temperature 37 4.2 Analysis of Slopes and Two Factor Parameters 41 4.3 Model Fitting Performance 49 4.4 Lifetime Distribution and Prediction Interval Conditioned on Observed Time Points 54 4.4.1. Bootstrap Method of Lifetime Distribution 54 4.4.2. Formula Derivation Method of Lifetime Distribution with considering Measurement Error and Compare with Simulation Method 59 4.5 Prediction When Some Usage Scenarios Are Given 60 4.5.1. Prediction if There Is No Rest Periods in the Winter in the Future . . 61 4.5.2. Prediction if There Are Some Rest Periods in the Winter in the Future 62 4.5.3. Prediction if There Are Some Rest Periods in the Summer in the Future 64 4.5.4. Comparison of Different Usage Scenarios 65 Chapter 5. Summary and Future Work 67 5.1 Summary 67 5.2 Future Work 68 References 70 Appendix A. The procedure of dealing with AVIOSYS temperature 73 Appendix B. Time Series Plots of Cumulative Discharge Temperature and Discharge Capacity 74 Appendix C. Model Fitting Results for ODC 77 Appendix D. Jensen's Inequality for Multi-Parameter Estimation Methods 83

    Bae, S. J., and Kvam, P. H. A nonlinear random-coefficients model for degradation testing. Technometrics 46, 4 (2004), 460–469.
    Chen, L., An, J., Wang, H., Zhang, M., and Pan, H. Remaining useful life prediction for lithium-ion battery by combining an improved particle filter with sliding-window gray model. Energy Reports 6 (2020), 2086–2093.
    Chen, L., Ding, Y., Liu, B., Wu, S., Wang, Y., and Pan, H. Remaining useful life prediction of lithium-ion battery using a novel particle filter framework with grey neural network. Energy 244 (2022), 122581.
    Chen, P.-C. Remaining useful life prediction of lithiumion batteries under different temperature and discharge current based on piecewise random coefficient models. Master’s Thesis of National Cheng Kung University (2021).
    Chiu, T.-C. Remaining useful life prediction of lithiumion batteries based on piecewise random coefficient models. Master’s Thesis of National Cheng Kung University (2020).
    Deng, L., Shen, W., Wang, H., and Wang, S. A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery. Neural Computing and Applications 33, 6 (2021), 2035–2046.
    Dong, G., Chen, Z., Wei, J., and Ling, Q. Battery health prognosis using brownian motion modeling and particle filtering. IEEE Transactions on Industrial Electronics
    65, 11 (2018), 8646–8655.
    Duong, P. L. T., and Raghavan, N. Heuristic kalman optimized particle filter for remaining useful life prediction of lithium-ion battery. Microelectronics Reliability 81 (2018), 232–243.
    Gao, X., Sitharam, M., and Roitberg, A. E. Bounds on the jensen gap, and implications for mean-concentrated distributions. arXiv preprint arXiv:1712.05267 (2017).
    Gebraeel, N. Z., Lawley, M. A., Li, R., and Ryan, J. K. Residual-life distributions from component degradation signals: A bayesian approach. IiE Transactions 37, 6 (2005), 543–557.
    Hong, Y., Duan, Y., Meeker, W. Q., Stanley, D. L., and Gu, X. Statistical methods for degradation data with dynamic covariates information and an application to outdoor weathering data. Technometrics 57, 2 (2015), 180–193.
    Li, X., Yuan, C., Wang, Z., He, J., and Yu, S. Lithium battery state-of-health estimation and remaining useful lifetime prediction based on non-parametric aging model and particle filter algorithm. eTransportation (2022), 100156.
    Lin, C.-P., Cabrera, J., Yang, F., Ling, M.-H., Tsui, K.-L., and Bae, S.-J. Battery state of health modeling and remaining useful life prediction through time series model. Applied Energy 275 (2020), 115338.
    Lipu, M. H., Hannan, M., Hussain, A., Hoque, M., Ker, P. J., Saad, M. M., and Ayob, A. A review of state of health and remaining useful life estimation methods for lithiumion battery in electric vehicles: Challenges and recommendations. Journal of cleaner production 205 (2018), 115–133.
    Lu, C. J., and Meeker, W. O. Using degradation measures to estimate a time-to-failure distribution. Technometrics 35, 2 (1993), 161–174.
    Lu, J.-C., Park, J., and Yang, Q. Statistical inference of a time-to-failure distribution derived from linear degradation data. Technometrics 39, 4 (1997), 391–400.
    Noura, N., Boulon, L., and Jemeï, S. A review of battery state of health estimation methods: Hybrid electric vehicle challenges. World Electric Vehicle Journal 11, 4 (2020), 66.
    Pang, X., Huang, R., Wen, J., Shi, Y., Jia, J., and Zeng, J. A lithium-ion battery rul prediction method considering the capacity regeneration phenomenon. Energies 12, 12 (2019), 2247.
    Peng, C.-Y. Inverse gaussian processes with random effects and explanatory variables for degradation data. Technometrics 57, 1 (2015), 100–111.
    Peng, C.-Y., and Tseng, S.-T. Mis-specification analysis of linear degradation models. IEEE Transactions on Reliability 58, 3 (2009), 444–455.
    Sepasi, S., Ghorbani, R., and Liaw, B. Y. Inline state of health estimation of lithium-ion batteries using state of charge calculation. Journal of Power Sources 299 (2015), 246–254.
    Shen, X., Luo, Z., Xiong, J., Liu, H., Lv, X., Tan, T., Zhang, J., Wang, Y., and Dai, Y. Optimal hybrid energy storage system planning of community multi-energy system based on two-stage stochastic programming. IEEE Access 9 (2021), 61035–61047.
    Si, X.-S., Wang, W., Hu, C.-H., and Zhou, D.-H. Remaining useful life estimation–a review on the statistical data driven approaches. European journal of operational research 213, 1 (2011), 1–14.
    Tan, C. M., Singh, P., and Chen, C. Accurate real time on-line estimation of state-of-health and remaining useful life of li ion batteries. Applied Sciences 10, 21 (2020), 7836.
    Tseng, S.-T., and Lee, I.-C. Optimum allocation rule for accelerated degradation tests with a class of exponential-dispersion degradation models. Technometrics 58, 2 (2016), 244–254.
    Wang, D., Kong, J.-Z., Zhao, Y., and Tsui, K.-L. Piecewise model based intelligent prognostics for state of health prediction of rechargeable batteries with capacity regeneration phenomena. Measurement 147 (2019), 106836.
    William, Q. M., and Escobar, L. A. Statistical methods for reliability data. A. Wiley Interscience Publications (1998).
    Xu, X., Tang, S., Yu, C., Xie, J., Han, X., and Ouyang, M. Remaining useful life prediction of lithium-ion batteries based on wiener process under time-varying temperature condition. Reliability Engineering & System Safety 214 (2021), 107675.
    Xu, X., Yu, C., Tang, S., Sun, X., Si, X., and Wu, L. Remaining useful life prediction of lithium-ion batteries based on wiener processes with considering the relaxation effect. Energies 12, 9 (2019), 1685.
    Xue, Z., Zhang, Y., Cheng, C., and Ma, G. Remaining useful life prediction of lithiumion batteries with adaptive unscented kalman filter and optimized support vector regression. Neurocomputing 376 (2020), 95–102.
    Yang, Z., Wang, Y., and Kong, C. Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and gwo-svr model. IEEE Transactions on Instrumentation and Measurement 70 (2021), 1–11.
    Zheng, X., and Fang, H. An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction. Reliability Engineering & System Safety 144 (2015), 74–82.

    無法下載圖示 校內:2027-07-25公開
    校外:2027-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE