簡易檢索 / 詳目顯示

研究生: 楊長霖
Yang, Chang-Lin
論文名稱: 利用微流體技術增進核苷酸雜交效率之研究
Study of Improving Nucleic Acid Hybridization Efficiency Utilizing Microfluidic Technology
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 91
中文關鍵詞: 微流體雜交生物晶片
外文關鍵詞: microfluidic, hybridization, biochip
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統雜交實驗中,靜置與微擾動之樣本藉由擴散機制,補充與探針結合所消耗之樣本,此反應通常需要16~18小時,對於進行大量、快速樣本檢測,實為一大阻礙。因此本論文提出一能提昇雜交效率之方法,藉由雙向微流驅動裝置,使填滿於反應區之樣本,能於反應過程中往復流動,使樣本以對流機制,補充與探針結合所消耗之樣本,且所設計之反應區,使往復流動樣本於載玻片點印探針區域,具有較大之伸展應變率,可使得樣品中之DNA拉長,且增加DNA與探針之碰撞機率,因而提高雜交效率。
    微流體雜交晶片包含雙向微流驅動裝置、反應區、點印探針之載玻片與溫度控制裝置。雙向微流驅動裝置包含吸、推元件,當空氣注入吸元件時,能於反應區產生吸力;當空氣注入推元件時,能於反應區產生推力。以LabVIEW程式控制電磁閥,將幫浦輸出之空氣於吸、推元件間作快速切換,便能將填滿於反應區之流體產生往復流動之效果,系統之最大震盪頻率為2.25Hz。反應區採翻模方式製作,為PDMS材質,可確保於其中之樣品不易滲漏。溫度控制裝置,能使晶片保持在實驗條件溫度。論文中進行傳統雜交實驗與微流體雜交實驗,並加以比較。由實驗結果可得知,所設計之晶片能提高雜交效率。

    The conventional hybridization method often takes 16 to 18 hours to replenish target, which is hybridized with the probe by diffusion, and impediment for large number and fast examining. The present study brings up a method to improve hybridization efficiency by a bi-directional device, which drives samples in the reaction area to flow back and forth, to replenish target, which is hybridized with probe by convection. The designed reaction area, at which the position of probe having higher extensional strain rate by back and forth target mixture flow. DNA can be stretched at this higher extensional strain rate area, and the base pair of DNA can be exposed to complementary target. Microfluidic hybridization chip is consist of a bi-directional driving device, a reaction area, spotted slide and temperature controlled device. The system can control solenoid valves, which is connected to suction and exclusion component, to fast repeat on and off to drive the sample solution in the reaction area flowing back and forth by LabVIEW controlled software. The maxmium oscillation frequency of the system is 2.25 Hz.
    Hybridization by conventional and microfluidic method was presented and compared in this work. Results reveal that the designed microflluidic hybridization chip can improve hybridization efficiency.

    目 錄 摘要 I ABSTRACT II 致 謝 III 目 錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目標 6 1.4 實驗架構 6 第二章 晶片設計與模擬 9 2.1 驅動器設計與模擬 10 2.1.1 驅動器設計 10 2.1.2 數值模擬 11 2.2 反應區設計與模擬 15 2.2.1 反應區設計 15 2.2.2 數值模擬 16 第三章 晶片製作 22 3.1 CO2雷射加工 22 3.1.1 驅動器製作 23 3.1.2 反應區晶片製作 27 3.1.2.1 反應區母模製作 28 3.1.2.2 反應區翻模 30 3.1.2.3 PDMS反應區結構清潔 32 3.2 晶片接合技術 33 3.2.1 PMMA與PMMA熱融永久接合 33 3.2.1.1晶片清潔 33 3.2.1.2 熱融接合 33 3.2.2 PMMA驅動器、PDMS反應區與載玻片暫時性接合 35 第四章 實驗平台之建立 38 4.1 實驗儀器設備 38 4.1.1 空氣壓縮機 38 4.1.2 流量計 39 4.1.3 電磁閥 40 4.1.4 溫控模組 41 4.1.5 LabVIEW控制程式 42 4.2 實驗平台架設 44 第五章 雜交反應實驗 46 5.1 原理 48 5.2 傳統雜交實驗 49 5.2.1 Buffer之調配 49 5.2.2 探針DNA製備 50 5.2.3 載玻片表面處理 50 5.2.4 將探針點印至載玻片 51 5.2.5 點印探針載玻片之後續處理 54 5.2.6 Total RNA以反轉錄方式標定Cy5螢光物質 55 5.2.7 進行雜交反應 56 5.2.8 反應後之清洗 57 5.2.9 螢光掃描與分析 58 5.3 微流體雜交實驗 59 第六章 結果與討論 61 6.1 系統震盪頻率 61 6.2 溫度控制 63 6.3 傳統雜交實驗與微流體雜交實驗結果 64 6.3.1 稀釋濃度樣本於微流體雜交晶片靜置與震盪2小時之比較 77 6.3.2 稀釋濃度樣本於傳統雜交實驗靜置2小時、16小時與於微流體雜交晶片震盪2小時之比較 78 6.3.3 原濃度樣本於傳統雜交實驗靜置2小時、16小時與稀釋濃度樣本於微流體雜交晶片震盪2小時之比較 80 第七章 結論與建議 83 7.1 結論 83 7.2 建議 85 參考文獻 86

    [1] A. Manz, N. Graber and H. Widmer, “Miniaturized total chemical analysis system: a novel concept for chemical sensing,” Sensors and Actuators B, 1, pp. 244-248, 1990.
    [2] G. Sanders and A. Manz, “Chip-based microsystems for genomic and proteomic analysis,” Trends in Analytical, 19, pp. 364-378, 2000.
    [3] S. Dewitt, “Microreactors for chemical synthesis,” Current Opinion in Chemical Biology, 3, pp. 350-356, 1999.
    [4] C. S. Effenhauser, G. J. M. Bruin and A. Paulus, “Integrate chip-based capillary electrophoresis,” Electrophoresis, 18, pp. 2203, 1997.
    [5] Y. C. Lin and W. D. Wu, “Arrayed-electrode design for moving electric field driven capillary electrophoresis chips,” Sensors and Actuators B, 73, pp. 54-62, 2001.
    [6] M. U. Kopp, A. J. de Mello and A. Manz, “Chemical amplification continuous flow PCR on a chip,” Science, 280, pp. 1046-1048, 1998.
    [7] Y. C. Lin, M. Y. Huang, K. C. Young, T. T. Chang and C. T. Wu, “A rapid micro-PCR system for hepatitis C virus amplification,” Sensors and Actuators B, 71, pp. 2-8, 2000.
    [8] Y. C. Lin, C. C. Yang and M. Y. Huang, “Simulation and experimental validation of micro PCR chips,” Sensors and Actuators B, 71, pp. 127-133, 2000.
    [9] Y. C. Lin, H. C. Ho, C. K. Tseng and S. Q. Hou, “A poly-methylmethacrylate electrophoresismicrochip with sample preconcentrator,” Journal of Micromechanics and Microengineering, 11, pp. 189-194, 2001.
    [10] S. P. A. Fodor , ”Massive parallel genomics,” Science, 277, pp. 393-395, 1997.
    [11] A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi and H. M. Widmer, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, 593, pp. 253, 1992.
    [12] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco and P. D. T. Burke, “An integrated nanoliter DNA-analysis device,” Science, 282, pp. 484-487, 1998.
    [13] M. Bao and W. Wang, “Future of microelectromechanical systems(MEMS),” Sensors and Actuators A, 57, pp. 135-141, 1996.
    [14] E. M. Southern, “Detection of specific sequences among DNA fragments separated by gel electrophoresis,” Journal of Molecular Biology, 98, pp. 503-517, 1975.
    [15] J. Khan, M. L. Bittner, Y. Chen, P. S. Meltzer and J. M. Trent, “DNA microarray technology: the anticipated impact on the study of human disease,” Biochimica et Biophysica Acta, 1423, pp. 17-28, 1999.
    [16] R. A. Heller and R. W. Davis, “Discovery and analysis of inflammatory disease- related genes using cDNA microarray,” Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 2150-2155, 1997.
    [17] C. Debouck and P. N. Goodfellow, “DNA microarrays in drug discovery and development,” Nature genetics, 21, pp. 48-50, 1999.
    [18] 周正中、白果能,“微陣列生物晶片簡介及其應用”, 科儀新知,第二十三卷第五期,pp.5-13,民國九十一年四月。.
    [19] M. Schena, D. Shalon, R. W. Davis and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, 270, pp. 467-470, 1995.
    [20] G. Mcgall, J. Labadie, P. Brock, G. Wallraff, T. Nguyen and W. Hinsberg, “Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists,” Proceedings of the National Academy of Sciences of the United States of America, 93, pp. 13555-13560, 1996.
    [21] S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nature Biotechnology, 17, pp. 974-978, 1999.
    [22] A. P. Blanchard, R. J. Kaiser and L. E. Hood, “High-density oligonucleotide arrays,” Biosensors and Bioelectronics, 11, pp. 687-690,1996.
    [23] http://www.affymetrix.com/technology/manufacturing/index.affx
    [24] S. Fodor, J. Read, M. Pirrung, L. Stryer, A. Lu and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science, 251, pp. 767-773, 1991.
    [25] http://www.affymetrix.com/technology/manufacturing/index.affx
    [26] http://www.nanogen.com/products/nanochip_micro.htm
    [27] L. Feng and M. Nerenberg, “Electronic microarray for DNA analysis,” Gene Therapy and Molecular Biology, 4, pp. 183-191, 1999.
    [28] R. Lenigk, R. H. Liu, M. Athavale, Z. Chen, D. Ganser, J. Yang, C. Rauch, Y. Liu, B. Chan, H. Yu, M. Ray, R. Marrero and P. Grodzinski, “ Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays,” Analytical Biochemistry, 311, pp. 40-49, 2002.
    [29] M. Chee, R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J. Lockhart, M. S. Morris and S. P. Fodor, “Accessing genetic information with high-density DNA arrays,” Science, 274, pp. 610-614, 1996.
    [30] Z. H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho , Q. Dong and R. Kumar, “Dynamic DNA hybridization on a chip using paramagnetic beads,” Analytical Chemistry, 71, pp. 4851-4859, 1999.
    [31] B. J. Cheek, A. B. Steel, M. P. Torres, Y. Y. Yu, and H. Yang, “Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip,” Analytical Chemistry, 73, pp. 5777-5783, 2001.
    [32] S. Shoji and M. Esashi, “Micro flow devices and systems,” Journal of Micromechanics and Microengineering, 4, pp. 157-171, 1994.
    [33] H. T. G. van Lintel, F. C. M. van de Pol, and S. Bouwstra, “A piezoelectricmicropump based on micromachining of silicon,” Sensors Actuators A, 15, pp. 153, 1988.
    [34] R. Zengerle, A. Richer and H. Sandmaier, “A micro membrane pump with electrostatic actuation,” Proceedings of IEEE Micro Electro Mechanical Systems, pp. 19-24, Travemünde, Germany,Feb.1992.
    [35] L. Bousse and A. Minalla, “Optimization of sample injection components in electrokineticmicrofluid system,” Technical Digest: 12th IEEE International Conference on Micro Electro Mechanical Systems, pp. 309-314, Orlando, Florida, USA, Jan. 1999.
    [36] T. S. J. Lammerink, M. Elwenspoek and J. H. J. Fluitman, “Integratedmicro-liquid dosing system,” Proceedings of IEEE Micro Electro Mechanical Systems, pp. 254–259, Fort Lauderdale, USA, Feb. 1993.
    [37] H. R. Reese and B. H. Zimm, “Fracture of polymer chains in extensional flow : experiments with DNA, and a molecular-dynamics simulation,” Journal of Chemical Physics, 92(4), pp.2650-2662, 1990.
    [38] P. J. Shrewsbury, S. J. Muller and D. Liepmann, “Effect of flow on complex biological macromolecules in microfluidic devices,” Biomedical Microdevices, 3:3, pp.225-238, 2001.
    [39] P. LeDuc, C. Haber, G. Bao and D. Wirtz, “Dynamics of individual flexible polymers in a shear flow,” Nature, 399, pp.564-566, 1999.
    [40] D. E. Smith, H. P. Babcock and S. Chu, “Single-polymer dynamics in steady shear flow,” Science, 283, pp.1724-1727, 1999.
    [41] C. P. Jen and Y. C. Lin, “Design and simulation of bi-directional microfluid driving systems,” Journal of Micromechanics and Microengineering, 17, pp. 115-121, 2002.
    [42] C. L. Yang, C. P. Jen and Y. C. Lin, “Optimized design of the bi-directional driving system for microfluids,” 26th National Conference on Theoretical and Applied Mechanics, Hu-Wei, Taiwan, 20-21 December, 2002.
    [43] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960.
    [44] F. M. White, Viscous Fluid Flow, McGraw-Hill, New York, 1991.
    [45] GCC LaserPROTM Mercury雷射雕刻機操作手冊,正詠資訊。
    [46] D.J. Campbell, K. J. Beckman, C. E. Calderon, P. W. Doolan, R. H. Moore, A. B. Ellis and G. C. Lisensky,“Replication and compression of bulk surface structures with polydimethylsiloxane elastomer,”Journal of Chemical Education, 76, pp. 537, 1999.
    [47] 謝勝治編著,“圖控式程式語言-LabVIEW”,全華科技圖書,民國八十八年一月。
    [48] 李權益編著,“分子生物學”,合記圖書出版社,民國八十七年。
    [49] J. Worley, K. Bechtol, S. Penn,D. Roach, D. Hanzel, M. Trounstine and D. Barker, “A systems approach to fabricating and analyzing DNA Microarrays,” Microarray Biochip Technology, pp. 65-85, 2000.

    下載圖示 校內:立即公開
    校外:2003-09-01公開
    QR CODE